
1. Introduction

In order to capture the influences for each 

location for the other location within an area or 

region, we must define the neighbor relation 

within them. By definition, the neighbor relation 

is defined inter-relation of one element position 

of x yi i,( )  and another element position of x yj j,( )  

within  map, such that  is a two-dimensional 

manifold that charted from world map, 

W W R: ⊆ 3 . As stated on Cressie (1991) and 

Cressie and Wikle (2011: p. 167) based on a site 

D  as subset of d  provide an geoinformation 

for each s x yi i,( )  or s x yi ,( )  location, which  

is stored as lattice Z = ( ) … ( )( ) = …Z s Z s i1 1, , , , ,Z Z
T

 

Z = ( ) … ( )( ) = …Z s Z s i1 1, , , , ,Z Z
T

 . Hence if there is no relation between 

s x yi ,( )  with itself, then we will have zero down 

the diagonals and hrc = 1  if there is a relation 

between s x yi ,( )  and s x yj ,( )  (Cressie and Wikle, 

2011). In order to describe inter-relation between 

si  on D  then we need a spatial neighbor 

relation matrix, W, to represent a spatial structure 

within the analysis (Getis and Aldstaldt, 2004; and 

Aldstald and Getis, 2010).

Hence this importance of W matrix, there 

should be researches which are focused on how 

to develop this matrix. Based on our attempt to 

search precedent research of spatial neighbor 

matrix, we found there are 180 researches 

focused on this subject, by using keyword: allin-

title: “spatial * matrix” on Google Scholar on 16-20 

August 2017. This attempt is used considering a 

research, which is focused on the development 

of spatial neighbor matrix, will highlight this 

subject in the title of their research. The result 

is shown in Appendix I.A.

However, based on our keywords, we found 
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several researches which are not directly related 

to the development of the W matrix. We also 

found several researches from the other subjects 

that are using “spatial * matrix” as their term. 

For example, based on Appendix I.A: Tegmark 

(1996), Gershman et al (1997), Roberts (1999), 

Roberts (2000), and Snell and Fuller (2010). 

Therefore, we eliminate and summarize the 

related topics in Appendix I.B. As shown in 

Appendix I.B, we found 32 of 180 papers, which 

are considered to have an impact on the develop-

ment of the matrix formulation.

Furthermore, if we deepen our analysis of 

that result, we found Aldstald and Getis (2006) 

that do not only provide theoretical construction 

but also practical technique to apply their theo-

retical formulation. Unfortunately, the paper that 

we found is using their technique on the distance-

based W matrix. Therefore, based on our search 

attempts, we have not found a precedent research 

of the formulation of binary spatial neighbor 

matrix W in lattice data structure, which provides 

us a theoretical and practical formulation. Row-

standardized W matrix can be easily derived from 

the binary W matrix.

We considered that the presentation of prac-

tical as well as the theoretical formulation of 

spatial neighbor matrix will provide more knowl-

edge and an easier attempt of replication for 

further research. Therefore, in this paper, we aim 

to provide not only the theoretical but also prac-

tical formulation of spatial neighbor matrix, W. 

Furthermore, in the practical section of this paper 

(Section III and IV) we provide several tech-

niques to formulate W matrix. Besides that, we 

also try to pursue the best and the most efficient 

computational technique that can be used.

The most efficient method that provides in 

this research aims to provide a future reference 

for spatial analysis. This condition is directly 

corresponding to provide minimize cost to do 

spatial analysis research. For example, if we want 

to analyze satellite data, then we have to deal with 

large lattice data structure. For example, satellite 

data for Jakarta and its neighborhood areas from 

Landsat Data 81). The satellite image has 

2061×1688 pixels dimension which can be trans-

lated into a 2061×1688 dimension matrix. Later 

section (Section 4) in this research we show 

that the efficient methods will have a big different 

impact to deal the large data structure.

Therefore, in order to accomplish our objec-

tive, we try to formulate an effective construction 

of weighted neighbor relation matrix based on a 

rectangular . There are four methods, that will 

be compared regarding their efficiency, such as 

1) Direct Arrow Reading (DAR); 2) Inner-outer 

neighbor method (ION); 3) ‘cell2nb’ and ‘poly2nb’ 

function on spdep package in R; and 4) Kronecker 

product (KP). Spdep package is chosen hence the 

package is regularly used by the applications of 

spatial analysis with R language program, such 

as Bivand et al (2008), Arbia (2014), and Kelejian 

and Piras (2017).

The methods will be discussed further in 

section III in this paper. On the other hand, all 

methods will be evaluated based on three com-

putational criteria: 1) time complexity; 2) space 

complexity, and; 3) actual simulation of elapsed 

time and object size.

2. Weighted Neighbor Relation Matrix

Construction of Weighted Neighbor Matrix 

started from constructing polygon structure 

object from the raster map. At this beginning step, 

we charted an open set (region), M ⊆ 3  into 
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two-dimensional system, which is defined any 

element m ∈M  inherits position m x y z, ,( ) ∈3  

that will be charted into ′ ( ) ∈m x y, 2 . Collection 

of m ∈M  called map of M. However, in this 

research any elements m x y,( ) ∈M  not only 

inherit latitude and longitude position on 3  but 

also carry on geoinformation on any m. We define 

this as spatial data of . The natural geomor-

phology with water bodies and dessert that car-

ried on in the lattice of rectangular D image 

matrix of M, can be easily converted by using 

projection matrix (Tanaka and Nishii, 2009).

Based on this projected  map we can 

construct the lattice formation as follows,

D m x y ii i i = ( ) = …{ }, : , ,1 Z  (1)

where, x is longitude and y is latitude, and Z is 

the last cell formed by an x y,( )  formation on  

map. Hence, subset cell D  can be constructed 

by any method of projection within M region, 

then we can have those subset cell mi . Let, 

s x y,( )  is a notation for each cell, then each 

s x y,( )  constructed by the value of x y,( )  coor-

dinate formation as follow

s x y x y ii i, , : , ,( ) = ( ) = …1 Z  (2)

By substitute equation (2) into the lattice forma-

tion on equation (1) then we will have,

D s x y ii i = ( ) = …{ }, : , ,1 Z  (3)

Equation (3) creates a spatial lattice, D  

based on grid cells. In this research, we try to 

use hyperbolic rectangle projection of M region, 

which implies  become a rectangular map with 

l = −( )x xmax min  and w = −( )y ymax min . Based on 

this map we can easily extract geo-information 

value of spatial  into spatial lattice matrix, 

D r c×( ) , where r and c are represented the row 

and column matrix for D. Each element repre-

sents 1 km square grid area of the map. This 

process demonstrated by Tanaka and Nishii 

(2009).

On the other hand, the neighbor relation 

between each element D r c×( )  also represents 

each rectangular lattice within D . We are able 

to retrieve the neighborhood information for each 

s x yi i,( ) . If i > 1  on equation (2), then there will 

exists a neighbor for each s x yi i,( ) . Cressie (1991: 

p. 384-385) defined that each spatial lattice D 

there will be always any N i  neighborhood from 

sub-area i on D.

: , ,N k k i ii = { } = …is a neighbor of 1 Z

 (4)

D i N iN i= ( ) = …{ }; : , ,1 Z  (5)

where, DN  is a spatial lattice which contains 

neighborhood information for each i. Besides, 

the k neighbor defines by Euclidian distance from 

i sub-area.

Translate (5) into (4) structure then we will 

have,

N s x y s x y s x y i j ij j j j i ii = ( ) ( ) ( ){ } ≠ = …, : , , , , , ,is a neighbor cell of 1 ZZ

N s x y s x y s x y i j ij j j j i ii = ( ) ( ) ( ){ } ≠ = …, : , , , , , ,is a neighbor cell of 1 ZZ

N s x y s x y s x y i j ij j j j i ii = ( ) ( ) ( ){ } ≠ = …, : , , , , , ,is a neighbor cell of 1 ZZ  (6)

where, N i  constructs as follows,

N s x y x y Dj ji = ( ) ( ) ∈{ }, : ,   (7)

where, j is neighbor index of s x yi i,( )  and k is 

cell-distance for k s x y s x yj j i i= ( ) − ( ), ,  on cell 

unit. The coordinate for s x yj j,( )  constructed by 

cell which are separated k-cell away from  

s x yi i,( ) . Under this argument then,

x y x y
x or y for x k or y k

x or y for x k or y k
i i

j j i i

j j i i

, ,|( ){ } =
+ +

− −




+ +

− −
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Secondary (Oblique) Nearest Neighbor.

A. Primary Nearest Neighbor Cells (1N)

1N structure is capture neighborhood cell 

s x yj j,( )  by horizontal-vertical neighbor relation-

ship with s x yi i,( ) . The relationship shown by 

Figure 2 below.

The list of 1N Cells denotes as s x yj j1 ,( ) , 

which is consists of
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B. Secondary (Oblique) Nearest Neighbors 

(2N)

On the other hand, 2N system capture 

diagonal neighbor relationship with s x yi i,( ) , 

which is constructed on Figure 3.

The list of 2N Cells denotes as s x yj j2 ,( ) , 

 (8)

In this research we using k = 1  and using 

the nearest neighbor cell. Therefore, there will 
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Thus, we can construct relation on equation (9) 

into following figure based on Tanaka and Nishii 

(2009) as follows,

Figure 1 shows us the possibility of neigh-

bor cell construction of s x yj j,( )  from cell dis-

tance k = 1 . Construction of Ni  on equation (9) 

and Figure 1 is defined as Nearest Neighbor Set, 

Ni  (Cressie, 1991), which is a Neighborhood 

construction that captures all possible neighbor 

cells with k = 1 . Ni  structure itself can be par-

titioned into two nearest neighbor subsets, which 

are called Primary Nearest Neighbor and  

5 
 

(9)  

Thus, we can construct relation on equation (9) into following figure based on Tanaka and 

Nishii (2009) as follows, 

Figure 1.  Neighbors Cell System of  

Figure 1 shows us the possibility of neighbor cell construction of  from cell 

distance  . Construction of   on equation (9) and Figure 1 is defined as Nearest 

Neighbor Set,  (Cressie, 1991), which is a Neighborhood construction that captures all 

possible neighbor cells with .  structure itself can be partitioned into two nearest 

neighbor subsets, which are called Primary Nearest Neighbor and Secondary (Oblique) 

Nearest Neighbor.  

A. Primary Nearest Neighbor Cells ( ) 

  structure is capture neighborhood cell   by horizontal-vertical 

neighbor relationship with . The relationship shown by Figure 2 below.  

 
  

  

   

   

Figure 2. Neighbor Cell Construction of  

Figure 1 k=1 Neighbors Cell System of s(xi, yi)

Figure 2 Neighbor Cell Construction of 1N

Figure 3 Neighbor Cell Construction of 2N
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The list of �� Cells denotes as ������ ���, which is consists of 

(10) ��� �

��
�
��
			

������� ��� � ��� � �� ���
������ ���� � ���� �� � ��
������� ��� � ��� � �� ���
������ ���� � ���� �� � ��

 

B. Secondary (Oblique) Nearest Neighbors (��) 

On the other hand, �� system capture diagonal neighbor relationship with 

����� ���, which is constructed on Figure 3. 

   

   

   

Figure 3. Neighbor Cell Construction of �� 

The list of �� Cells denotes as ������ ���, which is consists of, 

(11) ��� �
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�
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������� ���� � ��� � �� �� � ��
������� ���� � ��� � �� �� � ��

 

Based on those two sub-categories of �� and substitute (10) and (11) into (9), then we will 

have identity that �� is 

(12) �� � ��� � ��� 
    

   

   

Figure 4. Neighbor Cell Construction of �� 
 From those neighbors list then we can make a weighted list configuration of neighbor 

properties. In this research, we use binary methods in order to construct weighted list of 

neighbor cell. The binary methods created as follows, 
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which is consists of,
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Based on those two sub-categories of Ni  and 

substitute (10) and (11) into (9), then we will have 

identity that Ni  is

N N Ni i i= +1 2  (12)

From those neighbors list then we can make 

a weighted list configuration of neighbor proper-

ties. In this research, we use binary methods in 

order to construct the weighted list of neighbor 

cell. The binary methods created as follows,

s x y
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s x y N
N j j

j j

j j

,
, ,

, ,
( ) =

( ) ∈

( ) ∉







1

0

i

i

 (13)
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we will have,
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condition. Moreover, if we using secondary style 

on equation (11), then we have
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Therefore, given any D image matrix of any 

map , then the weighted neighbor relation 

matrix W become,

W WP WSZ Z Z Z Z Z× × ×= +  (16)

where, Z is the last cell formed by an x y,( )  

formation on  map. WPZ Z× , called as primary 

neighbor relation matrix, is W neighborhood 

matrix for N i . On the other hand, WSZ Z× , 

called as secondary neighbor relation matrix, is W 

neighborhood matrix for 2N i . Besides, Z value 

on equation (16) is also called as a “datasize” of 

matrix Dr c×  hence each Z ≡ ×r c  row is repre-

sented all s x yi i,( )  on D .

3. Construction Methods of W Matrix

In this section, we will discuss several meth-

ods, used in order to construct spatial neighbor 

matrix WZ Z× . However, in this research, we 

focused on how we construct this matrix by using 

R language program. By using R language pro-

gram there are several methods that can be used, 

such as: 1) direct arrow reading (DAR); 2) inner-

outer neighbor matrix method (ION); 3) ‘cell2nb’ 

and ‘poly2nb’ function on spdep R package; and 

4) Kronecker product (KP). The first two meth-

ods are also called the naïve methods, where the 

neighbor searching process is directly from each 

cell on the image matrix.

3.1 Direct Arrow Reading Method (DAR)

Direct arrow reading (DAR) is a naïve and 

simplistic method by literally apply arrow direc-

tion during the neighbor searching process, 

which is illustrated in Figure 2, Figure 3, and 

Figure 4. Based on equation (13), (14), and (15) 

above, we can create a spatial weighted neighbor 

matrix, which provides distance-based nearest 

Figure 4 Neighbor Cell Construction of Ni
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neighbor. Those process can be shown on Figure 

5 below. Assume D matrix has 3×3 dimension, 

defined as Y- row and X-column matrix. By using 

D3 3×  image matrix, then we will have W 3 3 3 3⋅( )× ⋅( ) .

By the neighbor searching process on Figure 4 

then we will have neighbor relation matrix of 

D3 3×  on following Table 1 and Table 2.

Based on those two construction we can 

construct 2N by subtract Total Neighbor Matrix 

with 1N matrix, which is defined by equation (12).

Script that used in this method of construc-

tion is defined by Script III.A in Appendix III. 

Each block on Script III.A represents each 

arrow direction to identify the neighbor cell of 

each cell. Generally, DAR process can be illus-

trated in Figure 6 above.

Figure 5 Construction Weighted Neighbor Matrix 
from D3×3 Grid Cell

Figure 6 Direct Arrow Reading Process

8 
 

   X  

  (,1) (,2) (,3)

 (1,)    

Y (2,)    

 (3,)    

Figure 5. Construction Weighted Neighbor Matrix from ���� Grid Cell 

By the neighbor searching process on Figure 4 then we will have neighbor relation matrix 

of  ���� on following Table 1 and Table 2. 

Table 1. Construction ���� Spatial Weighted Neighborhood Matrix 

���1,1� 0 1 0 1 1 0 0 0 0 

���1,2� 1 0 1 1 1 1 0 0 0 

���1,3� 0 1 0 0 1 1 0 0 0 

���2,1� 1 1 0 0 1 0 1 1 0 

���2,2� 1 1 1 1 0 1 1 1 1 

���2,3� 0 1 1 0 1 0 0 1 1 

���3,1� 0 0 0 1 1 0 0 1 0 

���3,2� 0 0 0 1 1 1 1 0 1 

���3,3� 0 0 0 0 1 1 0 1 0 

Table 2. Construction ���� Weighted Neighborhood Matrix for 1�� 
���1,1� 0 1 0 1 0 0 0 0 0 

���1,2� 1 0 1 0 1 0 0 0 0 

���1,3� 0 1 0 0 0 1 0 0 0 

���2,1� 1 0 0 0 1 0 1 0 0 

���2,2� 0 1 0 1 0 1 0 1 0 

���2,3� 0 0 1 0 1 0 0 0 1 

���3,1� 0 0 0 1 0 0 0 1 0 

Table 1 Construction W9×9 Spatial Weighted 
Neighborhood Matrix

sN (1,1) 0 1 0 1 1 0 0 0 0

sN (1,2) 1 0 1 1 1 1 0 0 0

sN (1,3) 0 1 0 0 1 1 0 0 0

sN (2,1) 1 1 0 0 1 0 1 1 0

sN (2,2) 1 1 1 1 0 1 1 1 1

sN (2,3) 0 1 1 0 1 0 0 1 1

sN (3,1) 0 0 0 1 1 0 0 1 0

sN (3,2) 0 0 0 1 1 1 1 0 1

sN (3,3) 0 0 0 0 1 1 0 1 0

Table 2 Construction W9×9 Weighted Neighborhood 
Matrix for 1Ni

s1 (1,1) 0 1 0 1 0 0 0 0 0

s1 (1,2) 1 0 1 0 1 0 0 0 0

s1 (1,3) 0 1 0 0 0 1 0 0 0

s1 (2,1) 1 0 0 0 1 0 1 0 0

s1 (2,2) 0 1 0 1 0 1 0 1 0

s1 (2,3) 0 0 1 0 1 0 0 0 1

s1 (3,1) 0 0 0 1 0 0 0 1 0

s1 (3,2) 0 0 0 0 1 0 1 0 1

s1 (3,3) 0 0 0 0 0 1 0 1 0
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3.2 Inner-Outer Neighbor Method (ION)

The second method to construct the W 

matrix is Inner-Outer Neighbor (ION) method. 

The searching process is to calculate the neigh-

borhood from the inner matrix and after that, we 

calculate the outer matrix area neighborhood 

later. This method. is used in order to optimize 

DAR time complexity, which is aimed to produce 

more efficient method than DAR method (further 

analysis regarding this efficiency will explain 

further and shown in Table 3 and Table 4 

comparison).

In this ION method, we divide D image 

matrix into two subsets of the cell, which are 

inner cells and outer cells. Inner cell subset of D 

are defined,

Inner ′ ′× ×=r c DR C  (17)

where, R =   −( ) −   +( )max minr r1 1  and C =   −( ) −   +( )max minc c1 1
C =   −( ) −   +( )max minc c1 1 . On the other hand, 

Outer ′ ′×r c  consists of the first and last section of 

r row and c column of matrix D. The construction 

process is illustrated as follows,

For example, let assume we have D4 4× , then 

the outer matrix of that matrix is D D′ ′× ×⊂3 3 4 4  

as illustrated as follows, ION method calculated 

separately hence inner matrix will always have 

all 8-Neighbor constructed at equation (9). On 

the other hand, every cell of Outer ′ ′×r c  will have 

less than 8-Neighbor due to the restricted condi-

tion of equation (7) and shown in Figure 8 

configuration.

The Construction by using Inner-Outer 

matrix is generated by using Script III.B in 

Appendix III.

Figure 7 Inner-outer Neighbor Method Process

Figure 8 Inner-Outer Matrix Configuration of D4×4

10 
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Figure 8. Inner-Outer Matrix Configuration of   

The Construction by using Inner-Outer matrix is generated by using Script III.B in 

Appendix III. 
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3.3 Kronecker Product (KP)

By definition, Kronecker product is an outer 

product representation of two matrices in form 

of block matrix. Kronecker product denoted by 

⊗ symbol. For example, given an A and B matrix 

as follows,

A Bji

m

n mn
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a a
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Thus, we will have A ⊗ B  relation as follows,
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By using this relationship, we can directly 

construct a spatial neighbor matrix, W. Relation 

of those two concepts shown by Tanaka and 

Nishii (2009). However, Tanaka and Nishii (2009) 

only shown us how to construct W which only 

consists of primary neighbor relationship. 

Therefore, in this paper, we try to construct 

primary and secondary neighbor relation by 

using a Kronecker product.

First, we need to adopt Kronecker delta of 

tensor into matrix component to construct a shift 

matrix.

Definition 3.1. (Wedderburn, 1934)

Kronecker delta δ ji  of matrix A means that,

a
if
if

such that a element ofji ji:=
=
≠





1
0

j i
j i

A

Therefore, by Definition 3.1 we can define 

Iii = δ ji . On the other hand, if we have a 

Kronecker delta δ j i+1,  and δ j i, +1  of matrix A, 

then it means,

a
if
if

such that a element ofji ji:=
+ =
+ ≠





1 1
0 1

j i
j i

A

a
if
if

such that a element ofji ji:=
+ =
+ ≠





1 1
0 1

j i
j i

A  

(18)

and,

a
if
if

such that a element ofji ji:=
= +
≠ +





1 1
0 1

j i
j i

A

a
if
if

such that a element ofji ji:=
= +
≠ +





1 1
0 1

j i
j i

A  

(19)

respectively.

Under condition on equation (18), the value 

of A similar to shifted the value of Iii  one column 

to the left. Thus, we called this matrix as left-

shifted matrix, denoted as L ji . On the other hand, 

if we apply condition (19) into matrix A the value 

of a ji  will be the same if we shifted matrix Iii  

one row upward. Therefore, we called this matrix 

as an upper-shifted matrix, denoted as U ji . 

Assume we have Ii  as follows,

Ii =
…

…























×( ) ×( )

1 0 0 0
0 1 0 0
0 0 1 0

0 0 1
� � �

r r c cor

Thus, we will have U ji  and L ji  respectively as,



Fundamental Review on the Formulation of Large Lattice Spatial Neighbor Matrices 49

U ji =

…

…
…

























 ×

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 0 1
0 0 0 0 0

� � � �

r rr c c( ) ×( )or

 (20)

L ji =

…

…

…

























 ×

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 1 0
� � � �

r rr c c( ) ×( )or

 (21)

The special consequences of equation (20) and 

(21) structure, then we will have conditions that 

U Lji ji
'

= ( )  and L Uji ji
'

= ( ) . Moreover, assume 

we have s-times shifted matrix of an In  identity 

matrix, then we can denote the shifted process 

matrix as follows,

L In s ns, for left-shifted , and

U In s ns, for up-shifted  (22)

Afterwards, we can apply the shift matrix into the 

construction of W matrix. Suppose we have the 

image matrix Dr c× , where r and c are each row 

and column of D respectively, Tanaka and Nishii 

(2009) define that,

W L U I I L URC RC R R C R C C× = +( ) ⊗ + ⊗ +( )

 (23)

However, in order to capture primary and second-

ary relation of nearest neighborhood (1N and 

2N) we need to expand equation (23) into follow-

ing equation,

W L U I I L U U L U L L URC RC R R C R C C R C C R C C× = +( ) ⊗ + ⊗ +( ) + ⊗ +( ) + ⊗ +( )
W L U I I L U U L U L L URC RC R R C R C C R C C R C C× = +( ) ⊗ + ⊗ +( ) + ⊗ +( ) + ⊗ +( )

W L U I I L U U L U L L URC RC R R C R C C R C C R C C× = +( ) ⊗ + ⊗ +( ) + ⊗ +( ) + ⊗ +( )  (24)

where,

WP L U I I L UZ Z× = +( ) ⊗ + ⊗ +( )R R C R C C

WS U L U L L UZ Z× = ⊗ +( ) + ⊗ +( )R C C R C C

Equation (24) above can be breakdown into 

the neighbor searching process by applying asso-

ciative property to Kronecker product. By proper-

ties of neighbor, searching is illustrated by arrow 

direction as shown in Figure 9.

By applying associative property on equation (24) 

we will have,

W L I U I I L I U U L U U LRC RC R C R C R C R C R C R C R× = ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗ LL L UC R C( ) + ⊗( )
W L I U I I L I U U L U U LRC RC R C R C R C R C R C R C R× = ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗ LL L UC R C( ) + ⊗( )

W L I U I I L I U U L U U LRC RC R C R C R C R C R C R C R× = ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗ LL L UC R C( ) + ⊗( )
W L I U I I L I U U L U U LRC RC R C R C R C R C R C R C R× = ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗( ) + ⊗ LL L UC R C( ) + ⊗( )

After that, we can rearrange them into following 

equation,

W L U I L U I L URC RC R R C C C R C C× = +( ) ⊗ + +( ) + ⊗ +( )
W L U I L U I L URC RC R R C C C R C C× = +( ) ⊗ + +( ) + ⊗ +( )  (25)

Consider that equation (25) represent each 

1-grid (nearest) neighborhood, N j , from each 

cell in image matrix. Let us want to search k-grid 

neighborhood of each cell, then by applying 

identity on equation (22) for s shifted matrix2), 

we will have,

Figure 9 Neighbor Searching from Central Point

6 
 

The list of �� Cells denotes as ������ ���, which is consists of 

(10) ��� �

��
�
��
			

������� ��� � ��� � �� ���
������ ���� � ���� �� � ��
������� ��� � ��� � �� ���
������ ���� � ���� �� � ��

 

B. Secondary (Oblique) Nearest Neighbors (��) 

On the other hand, �� system capture diagonal neighbor relationship with 

����� ���, which is constructed on Figure 3. 

   

   

   

Figure 3. Neighbor Cell Construction of �� 

The list of �� Cells denotes as ������ ���, which is consists of, 

(11) ��� �

��
�
��
			

������� ���� � ��� � �� �� � ��
������� ���� � ��� � �� �� � ��
������� ���� � ��� � �� �� � ��
������� ���� � ��� � �� �� � ��

 

Based on those two sub-categories of �� and substitute (10) and (11) into (9), then we will 

have identity that �� is 

(12) �� � ��� � ��� 
    

   

   

Figure 4. Neighbor Cell Construction of �� 
 From those neighbors list then we can make a weighted list configuration of neighbor 

properties. In this research, we use binary methods in order to construct weighted list of 

neighbor cell. The binary methods created as follows, 
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where,
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In case of Kronecker product construction, 

we used two different construction methods: 1) 

By using Shift Matrix function of matrixcalc 

package; and 2) By using our generic function to 

construct Shift Matrix. Both methods are built 

by using Sparse matrix construction. In order to 

use sparse matrix, we need to transform the 

matrix-base class into ‘CsparseMatrix’ class on 

Matrix package. ‘CsparseMatrix’ class is the 

virtual class of all sparse matrices coded in sorted 

compressed column-oriented form (Bates and 

Maechler, 2017)

3.3.1 Shift Matrix by matrixcalc Package

There are four types of shift function that 

provided by matrixcalc package, which each of 

one of them represents the direction of shift. The 

function explained as follows (Novometsky, 

2015),

shift. up 

  

(A, rows= s1, fill=fill)
shift.down

shift. right 

  

(A, cols= s2, fill=fill)
shift. left

where, A is a matrix, s1  is the number of row-

direction of shift process, s2  is the number of 

column-direction of shift process, and fill is fill 

value which as the default value of zero. However, 

hence A ji  matrix that shifted on our analysis is 

Iii , and suppose we have D ji  is a ‘shift.down’ 

matrix and R ji  is a ‘shift.right’ matrix, then If 

and only if A ji  is α ⋅ Ii , then U Rji ji=  and 

D Lji ji= .

By using R program and shift matrix function 

inside of matrixcalc package, then we can write 

the algorithm as follows,

library (Matrix);
library (matrixcalc)

ic ← diag(1, ncol = c, nrow = c);
ir ← diag(1, ncol = r, nrow = r);
uc ← shift. up(ic); lc ← shift. left(ic);
ur ← shift. up(ir); lr ← shift. left(ir)

# Block 1−Block 8 #
ic. s ← as(ic, "CsparseMatrix"); ir. s ← as(ir, "CsparseMatrix")
uc ← as(uc, "CsparseMatrix"); lc ← as(rc, "CsparseMatrix")
ur ← as(ur, "CsparseMatrix"); lr ← as(rr, "CsparseMatrix")
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3.3.2 Generic Function for Shift Matrix

In the second approach, instead of using a 

package we try to build our generic function by 

using R Core function. The function constructed 

by following Script 2.

Note: r and c is each length of row and column of Dr×c within simulation.

Script 1 Kronecker Product Method using matrixcalc

ac ← uc+lc; ar ← ur+lr

# Block 9 #
W ← kronecker (ar,ir. s) + kronecker(ic. s, ar) + kronecker(ur, ac) + kronecker(lr, ac)

## Constructing the Function ##
left ← function(dims){

require(Matrix)
B ←as(diag(1, dims–1, dims–1), "CsparseMatrix")
D ←as(matrix(rep(0, dims), nrow = dims, ncol = 1), "CsparseMatrix")
E ←cbind(rbind(t(D[1: dims–1]), B), D)
return(E)

}

up <– function(dims){
require(Matrix)
B ←as(diag(1, dims–1, dims–1), "CsparseMatrix")
D ←as(matrix(rep(0, dims), nrow = dims, ncol = 1), "CsparseMatrix")
E ←cbind(D, rbind(B, t(D[1: dims–1])))
return(E)

}

## Elapsed Time Calculation ##
ic ←as(diag(1, ncol = c, nrow = c), "CsparseMatrix")
ir ← as(diag(1, ncol = r, nrow = r), "CsparseMatrix")
dim. c ←ncol(ic);
dim. r <– ncol(ir)

# Block 1−Block 6 #
ac ←left(dim. c)+up(dim. c);
ar ← left(dim. r)+up(dim. r);
uc ←up(dim. c); lc ← left(dim. c);
ur ←up(dim. r); lr ← left(dim. r);

# Block 7 #
W ← kronecker((lr+ur), ic)+ kronecker(ir, (lc+uc))+

kronecker(ur, (lc+uc)) + kronecker(lr, (lc+uc))

Note: r and c is each length of row and column of Dr×c within simulation.
dims is referenced to the value of r×c

Script 2 Kronecker Product Method using Generic Function for Shift Matrix
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In order to derive complete analysis for our 

Kronecker product attempts, we need to compare 

both methods with the other methods for con-

struction of W matrix (The result shown in 

Section IV). As general, we can illustrate execu-

tion process for Kronecker product methods as 

follows,

3.4 Polygon and Cell Based on spdep R 

Package

The spdep R package is a widely used library 

to analyze spatial research. One of two functions, 

which are available within this package is also 

widely used by the researcher to construct spatial 

neighbor matrix. The functions are ‘poly2nb’ and 

‘cell2nb’. As general, the process of execution of 

those two functions is shown in Figure 11a and 

Figure 11b.

Based on Figure 11a and Figure 11b, the 

‘cell2nb’ and ‘poly2nb’ function are used to gener-

ate a neighbor list class for each cell within an 

image matrix. In order to convert that list into a 

spatial neighbor matrix, W, then we need one or 

two more functions on spdep. As provides in 

general steps to construct W matrix from a list 

of neighbors, we need a ‘nb2mat’ functionality 

Figure 11a Illustration of ‘poly2nb’ Process

Figure 11b Illustration of ‘cell2nb’ Process

Figure 10 Kronecker Product Method by using Shift Matrix

Script 3 Poly2nb Method

library(raster); library(sp); library(spdep)

# Block 1–Block 3 #
poly. sim ← rasterToPolygons(raster. sim)
nb.sim ← poly2nb(poly. sim, queen = T)
mat. nb. sim ← as(nb2mat(nb. sim, style = "B"), "CsparseMatrix")
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within the package.

Unfortunately, the ‘nb2mat’ functionality 

does not provide the sparse option. In order to 

create a W sparse matrix for the matrix output, 

then we need to define that the matrix output 

from ‘nb2mat’ function is constructed on 

‘CsparseMatrix’ form. In this case, we combine 

the spdep package with Matrix package.

4. Computational Comparison Between 

Methods

In this section, we compare all methods—

Direct Arrow Reading (DAR), Inner-Outer 

Neighbor (ION), Kronecker Product (KP), and 

spdep R package—regarding their application 

using R language program. The measurements 

are based on their time complexity of the algo-

rithm. Time complexity, denoted by O, is one of 

computational complexity. Let T is an algorithm 

system, and let n be an input string for T, thus

Definition 4.1 The running time, timeT n( ) , 

represent the number of units of time 

taken by an algorithm on any input size 

n (Aho and Ullman, 1995). On the other 

hand, spaceT n( )  is the maximum num-

ber, over all inputs of length n, of all 

memory to which the system writes 

(Gács and Lovász, 1999).

The function of timeT n( )  and spaceT n( )  

hold by the assumption that timeT n n( ) ≥  and 

spaceT n( ) ≥ 1  (Knuth, 1973). Hence this condi-

tion time complexity function, timeT n( )  write as 

O n( ) . Therefore, algorithm efficiency can be 

measure under O n( )  value. The algorithm that 

derives smaller O n( )  value is more time efficient 

than the other. Based on Script III.A, Script 

III.B, and Script 2 construction, then we can 

compare the time complexity of those two algo-

rithms on Table 3. However, as shown in Table 

3 we cannot compare spdep method to the others 

method. The Kronecker product process as 

shown in Table 3 in Block 3 of KP script, we 

refer the time complexity structure from 

Temperton (1983).

Based on Table 3, time complexity differences 

can be calculated as follows,

∆O ION n DAR n n n n n( ) − ( )( ) = + − +( )2 11 82 2

∆O ION n DAR n n n n n( ) − ( )( ) = + − +( )2 11 82 2

= − +6 122n n

The negative sign of time differences indicates 

that ION method (theoretically) has running time 

faster than DAR method to construct neighbor 

relation matrix. In order to strengthen the evalu-

ation, then we also calculate the space complexity 

between them.

On the other hand, if we compare the O KP( )  

with DAR and ION method, we will have,

∆O KP n DAR n n n n n n( ) − ( )( ) = + ⋅ − +( )6 4 8 2log

∆O KP n DAR n n n n n n( ) − ( )( ) = + ⋅ − +( )6 4 8 2log

= − + + ⋅8 5 42n n n nlog

Script 4 Cell2nb Method

library(raster); library(sp); library(spdep)

# Block 1 and Block 2 #
nb. cell ← cell2nb(nrow = row, ncol = col, type = "queen")
nb. mat. cell ←as(nb2mat(nb. cell, style = "B"), "CsparseMatrix")
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and

∆ KP n ION n n n n n n( ) − ( )( ) = + ⋅ − +( )6 4 2 112log

∆ KP n ION n n n n n n( ) − ( )( ) = + ⋅ − +( )6 4 2 112log

= − − + ⋅2 5 42n n n nlog

Both of those results shown us that,

Claim. Kronecker product method will derive 

faster execution process compared to 

ION and DAR methods.

In order to confirm this Claim, later we 

compute the actual elapsed time among all meth-

ods (including ‘poly2nb’, ‘cell2nb’ and matrixcalc 

methods). However, before we proceed to our 

actual computational comparison, we also theo-

retically compared the space complexity among 

methods. In this comparison we also cannot com-

pare ‘poly2nb’, ‘cell2nb’, and matrixcalc to DAR 

and ION methods, because we do not have enough 

immediate information regarding the algorithm 

source for each function within the packages.

As shown in Table 4 above, we also cannot 

gather enough information for algorithm source 

of Kronecker functionality inside R program. 

Even though we are looking for inside Cooley 

and Turkey (1965), and Temperton (1983), we 

cannot immediately obtain the measurement of 

space complexity for FFT based algorithm pro-

cess. However, based on Table 4 we can con-

clude that there are no significant differences in 

space between DAR and ION method. The ∆ 

value between those methods only 9n, where 

DAR has less memory space.

In this paper, we also did the actual compu-

tational comparison among the existing methods. 

Our computations are executed by each block 

within each method’s Script and calculated by 

using R Core utility function called ‘system.time’ 

for elapsed time and ‘object.size’. ‘system.time’ 

function calculated how long CPU times need to 

return each R expression execute (R v.3.4.0 

Table 3 Time Complexity Comparison between ION, DAR, and KP Methods

Method (ION) Method (DAR) Method (KP)

ION

Block 1 (n − 2)2

DAR

Block 1 n(n − 1)

KP

Block 1 4n

Block 2 (n − 2) Block 2 n(n − 1) Block 2 4n

Block 3 (n − 2) Block 3 n(n − 1) Block 3 2n

Block 4 (n − 2) Block 4 n(n − 1) Block 4 2n

Block 5 (n − 2) Block 5 (n − 1)2 Block 5 2n

Block 6 n Block 6 (n − 1)2 Block 6 2n

Block 7 (n − 2)2 Block 7 (n − 1)2 Block 7* 4∙n logn

Block 8 (n − 2) Block 8 (n − 1)2

TOTAL 6n + 4∙n logn*
Block 9 (n − 2) Block 9 n

Block 10 (n − 2)
TOTAL 8n2 + n

Block 11 (n − 2)

Block 12 n

Block 13 n

TOTAL 2n2 + 11n

Note: *) The time complexity is referred to Cooley and Turkey (1965).
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Documentation, 2017). System.time describes as 

follows,

system time expr gcFirst. , =( )TRUE

where, expr is a valid R expression to be timed 

and gcFirst is a logical expression that allows 

garbage collection to be performed immediately. 

All computational simulations are conducted by 

using following computational environment on 

Table 5.

The simulation procedure is conducted by 

comparing both method in term of time elapse 

for its algorithm executed for every block on 

Script 1-Script 4, Script III.A, and Script 

III.B. The comparison evaluated based on time 

complexity of algorithms, which is represented 

by elapsed time for each blocks of algorithm 

executed. These evaluations are simulated into 

several series of spatial lattice matrices Dr ×c  as 

follows,

D D Dr × × ( )× ( )= = …{ }c s s s3 3 3 10 3 10 1 2 11; , , ,for

where each matrix dimension will derive W WZ Z× ⋅( )× ⋅( )= r c r c

W WZ Z× ⋅( )× ⋅( )= r c r c  given an s-series of D matrix of simula-

tion. Matrix D series for simulation begin D0 with 

dimension r=3 and c=3 for construction W matrix 

from Figure 5. This simulation repeated 4 times 

for each D matrix and then calculate the average 

for those repetitions.

However, in this research, we also build the 

matrix simulation for WZ Z×  in form of Sparse 

Table 4 Space Complexity Comparison between ION, DAR, and KP Methods

Method S(ION) Method S(DAR) Method S(KP)

ION

Block 1 4(n − 2)2

DAR

Block 1 n(n − 1)

KP

Block 1 4n2

Block 2 3∙(n − 2) Block 2 n(n − 1) Block 2 4n2

Block 3 3∙(n − 2) Block 3 n(n − 1) Block 3 2n

Block 4 3∙(n − 2) Block 4 n(n − 1) Block 4 2n

Block 5 3∙(n − 2) Block 5 (n − 1)2 Block 5 2n

Block 6 n Block 6 (n − 1)2 Block 6 2n

Block 7 4∙(n − 2)2 Block 7 (n − 1)2 Block 7 unknown

Block 8 2∙(n − 2) Block 8 (n − 1)2

TOTAL unknown
Block 9 2∙(n − 2) Block 9 n

Block 10 2∙(n − 2)

TOTAL 8n2 + nBlock 11 2∙(n − 2)

Block 12 n

Block 13 n

TOTAL 8n2 + 10n

Table 5 Computational Environments for Simulations

Computational Environment

Processor
Intel core i7-6700K, 
4 GHz, 8 MB

Memory
DDR4-2133 64 GB 
(16 GB x 4 slots)

R version

Main Body 3.4.0 (64-bit)

Library (Matrix) 1.2-8

Library (sp) 1.2-4

Library (raster) 2.5-8

Library (matrixcalc) 1.0-3
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Matrix using R language. Sparse matrix used in 

order to avoid overflow. Overflow is occurred 

when the memory space that is needed to con-

struct any object is surpassed memory limit in 

the system. For example, if we input an integer 

value as an element value of a matrix, then we 

will have 208 bytes memory object, where an 

integer object itself consume 48 bytes memory3) 

in R language. On the other hand, sparse matrix 

object generally built to under construction that 

zero entries need not to be represented, which 

has impact to decrease amounts of memory 

(Knuth, 1973: 299) by using Boolean or logical 

value, instead of integer value. This condition will 

derive an advantage of sparse matrix object.

We illustrate the advantages of using sparse 

matrix method instead of the regular matrix by 

comparing space requirement to build the adja-

cency matrix, WZ Z× , for every spatial lattice 

matrices, Dr c× , on equation (21). In R language 

program we calculate space requirement by using 

‘object.size’ function. This function provides an 

estimate of each memory that is being used to 

store an R object (R Core, 2017). The results 

shown in Table 6 below.

In order to build Sparse Matrix by R lan-

guage, we use ‘sparseMatrix’ function on Matrix 

package, especially build as ‘dgCMatrix’ class. 

dgCMatrix class is a class of sparse numeric 

matrices in the compressed, sparse, column-ori-

ented format (Maechler and Bates, 2006). The 

function we use as follows,

WP t as sparseMatrix i j index. , , , " "← =( )( )1 FALSE dgCMatrix

WP t as sparseMatrix i j index. , , , " "← =( )( )1 FALSE dgCMatrix

WP WP t. : , :←  1 1Z Z  (27)

WP. t is the base sparse matrix which is built 

by the function. However, hence the sparse 

matrix is prepared before we conduct neighbor 

searching process, then we prepare all-zero val-

ues for each element on HP. “Index1” option 

valued as FALSE give us 0-based index factors 

for the matrix and row-column index counting 

are also start from 0. This condition implies that 

HP.t dimension will become W Z Z+( )× +( )1 1 . 

Therefore, we define WP dimension on equation 

Table 6 Object Size Comparison of Regular Matrix and Sparse Matrix in R

Simulation 
Model

Spatial Lattice  
Matrix (Dr×c)

Datasize
(Z)

Object Size

Regular Method Sparse Matrix

1 D3×3 9 848 Bytes 1432 Bytes

2 D30×30 900 6.48 MB 1544 Bytes

3 D60×60 3600 103.68 MB 1664 Bytes

4 D90×90 8100 524.88 MB 1784 Bytes

5 D120×120 14400 1658.88 MB 1904 Bytes

6 D150×150 22500 4.05 GB 2024 Bytes

7 D180×180 32400 8.398 GB 2144 Bytes

8 D210×210 44100 15.559 GB 2264 Bytes

9 D240×240 57600 “Integer Overflow” 2384 Bytes

10 D270×270 72900 “Integer Overflow” 2504 Bytes

11 D300×300 90000 “Integer Overflow” 2624 Bytes

12 D330×330 108900 “Integer Overflow” 2744 Bytes
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(27) as WZ Z× .

The regular matrix method in this computa-

tion is applied to DAR method as a benchmark. 

Therefore, as shown in Table 6, by using sparse 

matrix methods we can conserve a lot amount of 

memory and compatible with a basic method to 

analysis huge dimension spatial lattice matrix. By 

using R Core program only, regular matrix meth-

ods cannot handle D240×240. Based on this condi-

tion, then we run the next simulations by using 

sparse matrix method to construct the neighbor 

relation matrix for all methods.

As shown in Table 7, we have an actual 

object size comparison for all methods in bytes. 

Based on its, we have ION and DAR methods, 

which are a naïve approach has two least space 

allocated on the objects created during the algo-

rithm executed. On the other hand, ‘poly2nb’ and 

‘cell2nb’ (spdep packages) consume the most 

memory during the W matrix construction. Even 

though the Kronecker product methods do not 

provide the best result, but both of them stored 

relatively small memory size compared to both 

spdep approaches. Especially, our generic function 

for shift matrix is stored almost similar memory 

size to the best approach, DAR method.

The reason why the two spdep methods 

(especially ‘poly2nb’ method) are consumed a lot 

of space because during the construction process, 

which is neighborhood search process (explained 

in Figure 11a) is not based on matrix sparse 

class, but in form of list class. Furthermore, in 

the original function of ‘poly2nb’ in spdep function, 

there are not methods to convert list class on 

neighbor list class (the result of ‘poly2nb’ func-

tion) into W sparse matrix class. However, there 

is the tricky part to convert the list into W sparse 

matrix class, by using a code ‘as’ and ‘CsparseMatrix’.

The original steps to construct spatial neigh-

bor matrix based on spdep guidance as follows,

polygon neighbor list matrixpoly2nb nb2mat‘ ’ ‘ ’ →  → W

Based on those original steps, then we will have 

matrix class instead of sparse matrix class object. 

Therefore, we combine spdep with Matrix pack-

age as follows,

Table 7 Actual Memory Size Comparison between All Methods (in MB)

Image 
Matrix

Generic 
Function Matrixcalc cell2nb poly2nb ION DAR

1 0.011 0.015 0.006 0.036 0.003 0.002

2 0.123 0.156 0.312 2.940 0.088 0.087

3 0.466 0.587 1.247 11.748 0.353 0.353

4 1.040 1.306 2.809 26.432 0.799 0.799

5 1.845 2.313 4.997 46.991 1.425 1.424

6 2.879 3.608 7.812 73.425 2.230 2.230

7 4.144 5.1904 11.252 105.734 3.216 3.216

8 5.640 7.061 15.320 143.918 4.382 4.381

9 7.365 9.219 20.013 187.978 5.727 5.727

10 9.322 11.667 25.333 237.913 7.253 7.253

11 11.508 14.402 31.280 293.723 8.959 8.958

12 13.925 17.424 37.853 355.408 10.845 10.844



広島経済大学研究論集 第40巻第 3号58

polygon neighbor listpoly2nb

nb2mat

‘ ’

‘ ’

“

 → +
 →

as CsparseMMatrix” →

W matrix

However, even though we applied this steps 

to our analysis, we found that ‘poly2nb’ method 

requires space during construction of W matrix 

most. Our results in Table 7 are provided in 

sparse matrix construction, rather than the 

original one. Figure 12 provides graphics com-

parison of memory size between all methods.

On the other hand, Figure 13 provides a 

graphical comparison for top 4 least memory 

requirement methods. As we found that in Table 

7 and Figure 12 that spdep methods require the 

most memory, compared to the other methods. 

The differences between those two methods to 

the others are too big. Therefore, we separate 

them in Figure 13 to get a clearer picture of 

comparison to the other methods.

The second efficiency we measured is time 

efficiency. In this research, we simulate all meth-

ods using 12 type of size of image matrix, then 

measured it by using ‘system.time’ functionality 

in R program. The efficiency is measured in 

real-time regarding time lapsed during each 

method’s algorithm executed.

Elapsed time to execute each block or seg-

ment calculated by using R Core utility function 

called ‘system.time’. Each segment and blocks 

timed as separated expressions, except “Segment 

6” and “Segment 12”, which are separated by (;) 

sign on each segment. All actual elapsed time 

record for both scripts are compiled together in 

Table 8 below.

Note: *) Each simulation model results are represented on each partition vertical grid, 
which are ordered by legend order

Figure 12 Actual Memory Size Comparison of All Methods
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Furthermore, the result in Table 8, Figure 

14 and Figure 15 indicates that those methods 

we mention before are not the optimal methods 

for construction of W matrix. We found that both 

methods of Kronecker product by applying shift 

matrix provide the best result. This conclusion is 

derived from that both methods produce the 

minimum elapsed time and relatively less memory 

space (our generic function to generate shift 

matrix derive not many differences with the least 

Figure 13 Actual Memory Size Comparison of Top Four Least Memory Methods

Table 8 Total Elapsed Time Comparison for All Methods

Spatial Lattice  
Matrix (Dr×c)

Datasize
(Z)

Elapsed Time in seconds

KP1* KP2** cell2nb poly2nb ION DAR

D3×3 9 0.020 0.008 0.01 0.02 0.108 0.103

D30×30 900 0.010 0.025 0.33 0.29 3.255 3.23

D60×60 3600 0.020 0.010 1.22 1.54 13.560 13.58

D90×90 8100 0.018 0.035 2.72 5.86 32.910 33.02

D120×120 14400 0.013 0.020 4.84 18.09 67.628 67.55

D150×150 22500 0.030 0.018 7.63 48.96 131.688 143.58

D180×180 32400 0.025 0.015 10.93 91.25 240.263 253.87

D210×210 44100 0.038 0.020 15.04 173.87 429.298 438.08

D240×240 57600 0.090 0.025 19.72 290.44 680.398 757.51

D270×270 72900 0.093 0.083 24.92 503.46 852.975 1143.28

D300×300 90000 0.093 0.098 31.12 765.87 1202.630 1725.88

D330×330 108900 0.100 0.098 37.79 1154.57 1866.040 2055.15

Note:   *) KP1 method represents Generic Function for shift matrix.
 **) KP2 method represents matrixcalc function for shift matrix.
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space method, DAR).

Based on those result in Table 8 and Figure 

14 we can confirm that our actual elapsed time 

measurement is supporting our theoretical Claim 

beforehand. The Kronecker product method 

derived the faster elapsed time to construct W 

Figure 14 Elapsed Time Comparison between spdep Packages and Kronecker Product

Figure 15 Elapsed Time Comparison of Top Four Fastest Algorithm

matrix.

Our next highlight in this section is the 

elapsed time comparison. The Kronecker product 

can generate more efficient elapsed time com-

pares to both spdep package methods. As we 

discussed earlier, that in R language program the 
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matrix derived the best result among the other methods. 

0.954 2.954 3.556 3.909 4.158 4.352 4.511 4.644 4.760 4.863 4.954 5.037
Generic 0.020 0.010 0.020 0.018 0.013 0.030 0.025 0.038 0.090 0.093 0.093 0.100
Matrixcalc 0.008 0.025 0.010 0.035 0.020 0.018 0.015 0.020 0.025 0.083 0.098 0.098
cell2nb 0.01 0.33 1.22 2.72 4.84 7.63 10.93 15.04 19.72 24.92 31.12 37.79
poly2nb 0.02 0.29 1.54 5.86 18.09 48.96 91.25 173.87 290.44 503.46 765.87 1154.5

0

200

400

600

800

1000

1200

1400

El
ap

se
d 

Ti
m

e 
in

 S
ec

on
d

Comparison Figure: spdep and Kronecker Product

log10(datasize)



Fundamental Review on the Formulation of Large Lattice Spatial Neighbor Matrices 61

Figure 16a Elapsed Time Comparison of Kronecker Product Simulation

Figure 16b Elapsed Time Comparison of Kronecker Product Simulation

only practical methods, which is can be found in 

many handbooks of application of spatial analysis, 

to construct W matrix is using spdep packages. 

However, in this paper we provide better methods 

that can be used as different approaches.

Therefore, the last procedure to determine 

the best methods to construct W matrix is 

compared both methods of Kronecker product. 

Based on Figure 16a and Figure 16b we can 

compare the actual object size and elapsed time 

for each method for Kronecker Product construc-

tion of W matrix. Basically, both of them con-

sumed quite similar elapsed time and memory 

consumption. However, by using our generic 

function to construct shift matrix we can have 

less memory object compared to matrixcalc func-

tionality (Figure 16b). By those results we can 

conclude that Kronecker product based on our 

generic function for shift matrix derived the best 

result among the other methods.
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For a detailed comparison of the best method, 

Kronecker Product, into our theoretical time 

complexity in Table 3, we provide comparison 

figures in Figure 17. Theoretical approximation 

of time complexity, O f n( )( ) , shows similar trend 

for Kronecker product’s methods. As shown in 

Figure 17, the figure shows increasing trend for 

larger lattice structure on D, which also showed 

on the theoretical curve. Unfortunately, we can-

not provide overlay comparison for space com-

plexity, hence—as shown in Table 4 (Block 7 of 

Kronecker product method)—we cannot gather 

immediate information of space complexity for 

Kronecker product process.

5. Concluding Remarks

Very few precedent researches were found 

for the development of the spatial W matrix so 

far. Furthermore, we also found the fact that there 

is no precedent research, which provides a tech-

nical and application for the formulation of spatial 

W matrix for large lattice structure data. Under 

this condition, we need the optimal method that 

is efficient in term of space memory and elapsed 

time consumption. This paper thoroughly com-

pared the methods in term of computer CPU and 

memory resources. We found that Kronecker 

product method by using shift matrix structure 

gave us the best result compared to the other 

methods.
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Notes

1) Data source United States Geological Survey 
(USGS).

2) If we are using term on equation (22) we also can 
replace any In into zero-shifted matrix, Ln,0 or Un,0.

3) The value is defined by computing one integer value 
space in R by using ‘object.size’ function of R. On 
the other hand, we need 208 bytes to store one 
integer value on 1×1 dimension regular matrix. Even 
though, 1×1 dimension sparse matrix need 1632 
bytes to store 1 integer value, but bigger the dimen-
sion, than we will have less memory space for sparse 
matrix object (confirmed by Table 7)

Figure 17 Theoretical and Actual Simulation Overlay of Kronecker’s Time Complexity
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f(n) = 6n + 4･nlog10n
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APPENDIX I.A. LIST OF PRECEDENT RESEARCHES
Table I.A Table of Precedent Researches

Source: Google Scholar
Keyword: allintitle: (“spatial * matrix”)
Hit: 180 (without patents and citations)
Retrieval Date: 16–20 August 2017

No. Title Author(s) Journal Date of  
Publication

1 Constructing the Spatial Weights Matrix 
Using a Local Statistic

Getis, Arthur and 
Jared Aldstadt

Perspectives on spatial data 
analysis

2010

2
Using AMOEBA to Create a Spatial 
Weights Matrix and Identify Spatial 
Clusters

Aldstald and Getis Geographical Analysis 2006

3 Spatial weights matrix Zhou and Lin Encyclopedia of GIS 2008

4
Matrix fitting approach to direction of 
arrival estimation with imperfect spatial 
coherence of wavefronts

Gershman et al
IEEE Transactions on 

Signal Processing
1997

5
Measuring the neighboring and environ-
mental effects on residential property 
value: Using spatial weighting matrix

Hui et al Building and Environment 2007

6
Minimal realization of a spatial stiffness 
matrix with simple springs connected in 
parallel

Roberts, R.G IEEE Transactions on 
Robotics and Automation

1999

7 Direction of arrival estimation using the 
parameterized spatial correlation matrix

Dmochowski, Jacek 
et al

IEEE Transactions on 
Audio, Speech, and 

Language Processing
2007

8 Estimating a spatial autoregressive model 
with an endogenous spatial weight matrix

Xi Qu and Lung-fei 
Lee Journal of Econometrics 2015

9
A low complexity algorithm to simulate 
the spatial covariance matrix for clustered 
MIMO channel models

Vorenza, A. et al

Vehicular Technology 
Conference, 2004. VTC 

2004-Spring. 2004 IEEE 
59th

2004

10
Estimating direct-to-reverberant energy 
ratio using D/R spatial correlation matrix 
model

Hioka, Yusuke et al
IEEE Transactions on 

Audio, Speech, and 
Language Processing

2011

11
Robust uplink to downlink spatial covari-
ance matrix transformation for downlink 
beamforming

Chalise, B.K et al
2004 IEEE International 

Conference on 
Communications 

2004

12
Estimation of spatial weights matrix in a 
spatial error model, with an application to 
diffusion in housing demand

Bhattarcharjee, 
Arnab and Chris 

Jensen-Butler
n.a n.a

13
Nonparametric Estimation of the Spatial 
Connectivity Matrix Using Spatial Panel 
Data

Beenstock and 
Felsenstein Geographical Analysis 2012

14
Estimation of Spatial Weights Matrix, with 
an Application to Diffusion in Housing 
Demand

Bhattarcharjee, 
Arnab and Chris 

Jensen-Butler

 Centre for Research into 
Industry, Enterprise, Finance 

and the Firm, (CRIEFF 
Discussion Papers)

2006

15 Estimation of the spatial weights matrix 
under structural constraints

Bhattarcharjee, 
Arnab and Chris 

Jensen-Butler

Regional Science and Urban 
Economics

2013
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16 Computation of the information matrix for 
models with spatial interaction on a lattice Smirnov, Oleg A. Journal of Computational 

and Graphical Statistics 
2004

17

High-spatial resolution matrix-assisted 
laser desorption ionization imaging analy-
sis of glucosylceramide in spleen sections 
from a mouse model of Gaucher disease

Snel and Fuller Analytical Chemistry 2010

18 The spatial autocorrelation matrix Chessel, D.

Vegetation dynamics in 
grasslans, healthlands and 

mediterranean ligneous 
formations 

1981

19
Minimal realization of an arbitrary spatial 
stiffness matrix with a parallel connection 
of simple and complex springs

Roberts, R.G IEEE Transactions on 
Robotics and Automation

2000

20
Spatial regression models in criminology: 
Modeling social processes in the spatial 
weights matrix

Tita and Radil Handbook of quantitative 
criminology

2010

21 Model boosting for spatial weighting 
matrix selection in spatial lag models Kostov, Phillip

Environment and Planning 
B: Urban Analytics and City 

Science
2010

22
Direction of arrival estimation using eige-
nanalysis of the parameterized spatial 
correlation matrix

Dmochowski, Jacek 
et al

2007 IEEE International 
Conference on Acoustics, 

Speech and Signal Processing
2007

23 The spatial stiffness matrix from simple 
stretched springs Sellig, J.M. Robotics and Automation, 

2000. Proceedings
2000

24 On the Four Types of Weight Functions 
for Spatial Contiguity Matrix Yanguang Chen Letters in Spatial and 

Resource Sciences
2012

25
A Dynamic Spatial Weight Matrix and 
Localised STARIMA for Network 
Modelling

Tao Cheng et al Geographical Analysis 2014

26
Comparative analysis of spatial covariance 
matrix estimation methods in OFDM com-
munication systems

Maltsev, Alexander 
et al

2006 IEEE International 
Symposium on Signal 

Processing and Information 
Technology

2006

27
Automatic selection of a spatial weight 
matrix in spatial econometrics: Application 
to a spatial hedonic approach

Seya, Hajime et al
Regional Science and Urban 

Economics
2013

28
Spatial Nonstationarity and Spurious 
Regression: The Case with Row-
Normalized Spatial Weights Matrix

Lung-fei Lee and 
Jihai Yu Spatial Economic Analysis 2009

29

Analyzing the Effect of Spatial Weighted 
Matrix On Spatial Autocorrelation——
Taking Hunan’s Income Gap between 
Urban and Rural Areas as A Case

Hongliang, Wang 
et al

Journal of South China 
Normal University (Natural 

Science Edition)
2010

30 Bounds on eigenvalues of a spatial cor-
relation matrix Choi and Love IEEE Communications 

Letters
2014

31 Structure of the spatial stiffness matrix Sellig and Ding

Structure of the spatial 
stif fness matrix. 

International Journal of 
Robotics and Automation

2002

32 On the normal form of a spatial stiffness 
matrix Roberts, R.G

Proceedings 2002 IEEE 
International Conference on 

Robotics and Automation
2002
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33
Measuring quantum states: Experimental 
setup for measuring the spatial density 
matrix

Tegmark, M. Physical Review A 1996

34

Bayesians in Space: Using Bayesian 
Methods to Inform Choice of Spatial 
Weights Matrix in Hedonic Property 
Analyses

Mueller, Julie M. 
and John B. Loomis

The Review of Regional 
Studies

2010

35 Note on the normal form of a spatial 
stiffness matrix Roberts, R.G IEEE Transactions on 

Robotics and Automation
2001

36 Two-step lasso estimation of the spatial 
weights matrix

Ahrens, Achim and 
Arnab Bhattacharjee Econometrics 2015

37 Detection and estimation of block struc-
ture in spatial weight matrix

Lam, Clifford and 
Pedro C.L. Souza Econometrics Review 2016

38
Temporal convergence of phase spatial 
covariance matrix measurements in tomo-
graphic adaptive optics

Martin, O. et al
Adaptive Optics Systems III. 

Proceedings of the SPIE
2012

39 A matrix exponential spatial specification LeSage and Pace Journal of Econometrics 2007

40
DOA Estimation in Impulsive Noise 
Environments Using Fractional Lower 
Order Spatial-Temporal Matrix [J]

Jin and Zhong Acta Aeronautica Et 
Astronautica Sinica

2006

41 Analysis and application on the specifica-
tion methods of the spatial weight matrix Liu and Wang Geo-information Science 2002

42
Uplink to downlink spatial covariance 
matrix transformation concepts for down-
link beamforming

Chalise, B.K et al

Proceedings of the 3rd IEEE 
International Symposium on 

Signal Processing and 
Information Technology

2003

43
A Proposal for an Alternative Spatial 
Weight Matrix under Consideration of the 
Distribution of Economic Activity

Perret, Jens K. Schumpeter Discussion Paper 2011

44
On the eigenstructure of the signal-only 
tempo-spatial covariance matrix of broad-
band sources using a circular array

Messer and Rockah
IEEE Transactions on 
Acoustics, Speech, and 

Signal Processing
1990

45

The generalization of narrowband localiza-
tion methods to broadband environments 
via parametrization of the spatial correla-
tion matrix

Dmochowski, Jacek 
et al

Signal Processing 
Conference, 2007 15th 

European
2007

46 Computation of the information matrix for 
models of spatial interaction Smirnov, Oleg A. n.a 2003

47

Enhanced spatial covariance matrix esti-
mation for asynchronous inter-cell inter-
ference mitigation in MIMO-OFDMA 
system

Jung Su Han et al
VTC Spring 2009 - IEEE 
69th Vehicular Technology 

Conference
2009

48
Modelling a large, sparse spatial interac-
tion matrix using data relating to a subset 
of possible flows

Bailey and Munford European journal of opera-
tional research

1994

49 QML Estimation of the Spatial Weight 
Matrix in the MR-SAR Model

Benjanuvatra, 
Saruta

VII World Conference of the 
Spatial Econometrics 

Association
2013

50 The constitution and realization of spatial 
weight matrix based on ArcObjects [J] Pan Hai-Yan et al

Science of Surveying and 
Mapping

2007
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51 Choosing the right spatial weighting 
matrix in a quantile regression model Kostov, Phillip ISRN Economics 2013

52 Spatial Weighting Matrix Selection in 
Spatial Lag Econometric Model Kostov, Phillip Econometrics 2013

53
Spatial neighborhood matrix computation: 
inverse distance weighted versus binary 
contiguity

Negreiros, J n.a 2009

54
Spatial heteroskedasticity and autocorrela-
tion consistent estimation of covariance 
matrix

Kim and Sun Journal of Econometrics 2011

55 Optimization of spatial filter matrix [J] Zhou Hai et al
Optics and Precision 

Engineering
2007

56
On the spatial density matrix for the cen-
tre of mass of a one-dimensional perfect 
gas

Carazza, B. Foundations of Physics 
Letters

1997

57

Quantitative Submonolayer Spatial 
Mapping of Arg-Gly-Asp-Containing 
Peptide Organomercaptan Gradients on 
Gold with Matrix-Assisted Laser 
Desorption/Ionization Mass Spectrometry

Qian Wang et al Analytical Chemistry 2004

58 New spatial weight matrix and its applica-
tion in China’s regional foreign trade [J] Zhang Jia-Wei et al

Systems Engineering-Theory 
& Practice

2009

59 Simulation of the spatial covariance matrix Forenza, A. et al Simulation 2003

60

Stata Implementation of the non-paramet-
ric spatial heteroskedasticity and autocor-
relation consistent covariance matrix 
estimator

Jeanty, P.W. Stata conference San Diego 2012

61

A robust algorithm based on spatial dif-
ferencing matrix for source number detec-
tion and DOA estimation in multipath 
environment

Liu et al Physics Procedia 2012

62
Investigation of basic imaging properties 
in digital radiography. 12. Effect of matrix 
configuration on spatial resolution

Fujita and Giger Medical Physics 1988

63
Efficient multichannel nonnegative matrix 
factorization exploiting rank-1 spatial 
model

Kitamura, Daichi 
et al

2015 IEEE International 
Conference on Acoustics, 

Speech and Signal Processing
2015

64
One% Step Regularized Spatial Weight 
Matrix and Fixed Effects Estimation with 
Instrumental Variables

Lam and Souza n.a 2015

65

Iterative receiver with enhanced spatial 
covariance matrix estimation in asynchro-
nous interference environment for 3GPP 
LTE MIMO-OFDMA system

Jun-Hee Jang et al
IEICE TRANSACTIONS on 

Communications
2009

66 Model uncertainty in matrix exponential 
spatial growth regression models

Pribauer and 
Fischer Geographical Analysis 2015

67
Model selection using J-test for the spatial 
autoregressive model vs. the matrix expo-
nential spatial model

Han and Lee Regional Science and Urban 
Economics

2013

68 Using matrix exponentials to explore spa-
tial structure in regression relationships LeSage and Pace researchgate 2002
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69

Momentum density and spatial form of 
correlated density matrix in model two-
electron atoms with harmonic confine-
ment

Akbari, A. et al Physical Review A 2007

70 The spatial transfer matrix of curved box-
girder bridge Yan and Li Journal of Harbin 

Engineering University
2014

71 A novel array calibration method based on 
spatial correlation matrix for HFSWR Xiagou et al

IEEE 10th International 
Conference On Signal 
Processing Proceedings

2010

72
Synthesizing a positive definite spatial 
stiffness matrix with a hybrid connection 
of simple compliances

Roberts, R.G and 
Shirey

Proceedings World 
Automation Congress, 2004

2004

73
Large sample properties of the matrix 
exponential spatial specification with an 
application to FDI

Debarsy, N. Journal of Econometrics 2015

74
Image classification using spatial relation-
ship matrix based on color spatio-histo-
gram

Woosaeng, Kim 
et al

Proceedings. 2003 
International Conference on 
Multimedia and Expo, 2003. 

ICME ‘03. 

2003

75

Determination of the reverberation cham-
ber stirrer uncorrelated positions by 
means of the spatial and frequency cor-
relation matrix

Gradoni, G. et al

 2013 International 
Symposium on 

Electromagnetic 
Compatibility (EMC 

EUROPE)

2013

76
Spatial correlation matrix selection using 
Bayesian model averaging to characterize 
inter-tree competition in loblolly pine trees

Boone and Bullock Journal of Applied Statistics 2008

77 Taking off some hoods: Estimating spatial 
models with a non-arbitary W matrix

Fernandez-Vazquez, 
Esteban et al

Spatial Econometrics 
Conference

2007

78 A closer look at the spatial exponential 
matrix specification Rodrigues, E et al Spatial Statistics 2014

79
Robust spatial time-frequency distribution 
matrix estimation with application to 
direction-of-arrival estimation

Syariff, W. et al Signal Processing 2011

80
Interference suppression with iterative 
channel and spatial covariance matrix 
estimation for LTE downlink

Fan, J et al Digital Signal Processing 2014

81
Political interaction in the senate: estimat-
ing a political “spatial” weights matrix and 
an application to lobbying behavior

Chupp, B. A. Public Choice 2014

82 Spatial weighting matrix selection in spa-
tial lag econometric model Kostov, Phillip Econometrics 2013

83

A Combined Matrix Analysis on The 
Spatial Dislocation of Landscape 
Resources, Nameplate Scenery and 
Finance Achievement in China

Wang Mei-Hong 
et al

Human Geography 2009

84

Multichannel audio separation by direc-
tion of arrival based spatial covariance 
model and non-negative matrix factoriza-
tion

Nikunen and 
Virtanen

2014 IEEE International 
Conference on Acoustics, 

Speech and Signal 
Processingv (ICASSP)

2014
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85
Noise robust direction of arrival estima-
tion for speech source with weighted 
bispectrum spatial correlation matrix

Wei Xue et al
IEEE Journal of Selected 

Topics in Signal Processing
2015

86 Multibody mass matrix sensitivity analysis 
using spatial operators Jain and Rodriguez

International Journal for 
Multiscale Computational 

Engineering
2003

87

Evaluating effects of low quality habitats 
on regional population growth in 
Peromyscus leucopus: insights from field-
parameterized spatial matrix models

Grear and Burns Landscape Ecology 2007

88

A new spatial interpolation algorithm to 
reduce the matrix fill time in the method 
of moments analysis of planar microstrip 
structures

Ogucu, G.O. IEEE Transactions on 
Antennas and Propagation

2007

89 Estimation of a weights matrix for deter-
mining spatial effects Lima and Macedo n.a 1999

90
Robustness of the affine equivariant scat-
ter estimator based on the spatial rank 
covariance matrix

Kai Yu et al
Communications in Statistics 

- Theory and Methods 
2015

91 Selecting the Most Adequate Spatial 
Weighting Matrix:A Study on Criteria

Gomez, Marcus 
Herrera et al

EconPapers 2012

92 MUSIC algorithm of spatial prefiltering for 
vector hydrophones in an array matrix [J] He Yiyinga et al

Journal of Huazhong 
University of Science and 

Technology (Natural Science 
Edition)

2011

93

Correlative Analysis of Regional Economy 
Based on Transportation Network Spatial 
Weight Matrix——Taking Gansu Province 
as An Example [J]

Ma Qing-Yuan et al
Areal Research and 

Development
2007

94 Analysis on Forestland Change by Using 
Spatial Transition Matrix Model [J]

Zheng Chung-Yang 
et al

Forest Resources 
Management

2012

95
The construction of spatial weight matrix 
based on discrete points through building 
a searching area for each point

Wenii Yu et al

2010 International 
Conference on Computer 
Application and System 

Modeling

2010

96
An Improved Multichannel Spatial 
Correlation Matrix Based ARMA Model 
for Short-Term Wind Forecasting

Filik, T. n.a n.a

97

Alternative neighbourhood specifications 
of the spatial weight matrix; effects on 
spatial autocorrelation index and multi-
variate analysis of health data

Bertazzon and 
Elikan n.a 2009

98
Estimation of sound source orientation 
using eigenspace of spatial correlation 
matrix

Kenta Niwa et al

 2010 IEEE International 
Conference on Acoustics 

Speech and Signal Processing 
(ICASSP)

2010

99
Uplink to downlink spatial covariance 
matrix transformation methods for down-
link beamforming of a UMTS-FDD system

Chalise, B.K et al

Vehicular Technology 
Conference, 2004. VTC 

2004-Spring. 2004 IEEE 
59th

2004

100
Shape of turbulent lump in a circular pipe 
flow determined by spatial-dependence 
matrix

Kohei Ogawa et al
Chemical Engineering 

Communications 
1988
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101 Regularizing the covariance matrix using 
spatial information Tax, D.M.J n.a 2004

102
Rotation invariant texture feature based on 
spatial dependence matrix for timber 
defect detection

Hashim, Ummi R. 
et al

Intelligent Systems Design 
and Applications (ISDA), 
2013 13th International 

Conference on

2013

103
Nonparametric Estimation of the Spatial 
Connectivity Matrix by the Method of 
Moments Using Spatial Panel Data

Beenstock et al n.a 2009

104 Daily activity prediction based on spatial-
temporal matrix for ongoing videos Hsin-Lin Yang et al

Society of Instrument and 
Control Engineers of Japan 
(SICE), 2015 54th Annual 

Conference of the

2015

105
Blind Suppression of Nonstationary 
Diffuse Acoustic Noise Based on Spatial 
Covariance Matrix Decomposition

Nobutaka Ito et al
Journal of Signal Processing 

Systems
2015

106 Matrix Powers and Marginal Effects in 
Spatial Autoregressive Models

Kripfganz, 
Sebastiaan SSSRN 2015

107
Quantization and feedback of spatial 
covariance matrix for massive MIMO 
systems with cascaded precoding

Yinsheng Liu et al
IEEE Transactions on 

Communications
2017

108

Bayesian Estimation of A Spatial 
Autoregressive Model with An Unobserved 
Endogenous Spatial Weight Matrix and 
Unobserved Factors$

Xiaoyi Han Manuscript, The Ohio State 
University

2013

109
Spatial, Temporal, and Matrix Variability 
of Clostridium botulinum Type E Toxin 
Gene Distribution at Great Lakes Beaches

Wijesinghe, 
Rasanthi U.

Applied and Environmental 
Microbiology

2015

110
Discrete choice modeling with interde-
pendencies: A spatial binary Probit model 
with endogenous weight matrix

Zhou Y. n.a 2015

111
Testing for a structural break in the weight 
matrix of the spatial error or spatial lag 
model

Angulo, Ana et al Spatial Economic Analysis 2017

112
Institutions and growth: Testing the spatial 
effect using weight matrix based on the 
institutional distance concept

Ahmad and Hall mpra.ub.uni-muenchen.de 2012

113

Handloom Silk Defect Recognition and 
Categorization using Gray Level Weight 
Matrix & Multi Resolution Combined 
Statistical and Spatial Frequency Method

Sabeenian, R.S et al researchgate n.a

114
Spatial wavelet approach to local matrix 
crack detection in composite beams with 
ply level material uncertainty

Sarangapani, G. 
et al

Applied Composite Materials 2013

115
The Improbable Nature of the Implied 
Correlation Matrix from Spatial Regression 
Models

Sen, Monalisa and 
Anil K. Bera Regional Statistics 2014

116 A matrix exponential spatial specification 
approach to panel data models

Figueiredo and Da 
Silva Empirical Economics 2015

117
Interaction matrix selection in spatial 
econometrics with an application to growth 
theory

Debarsy and Ertur n.a 2016
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118 A New Selection Method of Spatial Weight 
Matrix

Ren Yinghua and 
You Wanhai Statistical Research 2012

119
Comparison of Uniform and Kernel 
Gaussian Weight Matrix in Generalized 
Spatial Panel Data Model

Purwaningsih, Tuti 
et al

Open Journal of Statistics 2015

120
Estimating the impact of air quality with a 
spatial hedonic: Geostatistical versus 
weight matrix approaches

Tandon, S, et al n.a 2007

121
Analyzing the impact of different spatial 
weight matrix for the western coast of the 
Taiwan straits

Chen and Huang Journal of Shangqiu Normal 
University

2016

122 Model for Effect of Spatial Weighted 
Matrix on Spatial Autocorrelation Zhilang Wang et al

Jurnal of Applied 
Mathematics and Statistics

2013

123 A novel soft spatial weights matrix method 
based on soft sets Wang and Xiao International Journal of 

Applied Decision Sciences
2016

124
An Estimation Method of Sound Source 
Orientation Using Eigenspace Variation of 
Spatial Correlation Matrix

Kenta Niwa et al

IEICE Transactions on 
Fundamentals of Electronics, 

Communications and 
Computer Sciences

2013

125 Spatial Lag Model Estimation with Sparse 
Adjustment for Spatial Weight Matrix

Lam, Clifford and 
Pedro C.L. Souza n.a n.a

126

Extracting geographical networks from 
online network resource: Building a spatial 
neighbourhood matrix of local munici-
palities using free online encyclopaedia 
information

Shikano and 
Meissner

Annual meeting des 
Arbeitskreises Handlungs- 

und Entscheidungstheorie der 
Deutschen Vereinigung der 

Politischen Wissenschaft

2013

127
A bearing fault diagnosis technique based 
on singular values of EEMD spatial condi-
tion matrix and Gath-Geva clustering

Kun Yu et al Applied Acoustics 2017

128

Relative Spatial Distance Matrix: a Novel 
and Invariant Data Structure for 
Representation and Retrieval of Exact 
Match Symbolic Images

Punitha, P. et al
Proceedings of the 

International Conference on 
Cognition and Recognition

2005

129
The Influence of the Structure of Spatial 
Weight Matrix on Regression Analysis in 
the Presence of Spatial Autocorrelation

Tsutsumi, Morito 
et al 土木計画学研究・論文集 2000

130

Dynamic Large Spatial Covariance Matrix 
Estimation in Application to 
Semiparametric Model Construction via 
Variable Clustering: the SCE approach

Song, Song arXiv 2011

131 Data-aided SIMO channel estimation with 
unknown noise spatial covariance matrix Xin Meng et al

 IEICE Communications 
Express

2014

132 A Note on Eigenstructure of a Spatial 
Design Matrix In R Kim and Tarazaga

 Communications for 
Statistical Applications and 

Methods
2005

133 Spatial Prominence and Spatial Weights 
Matrix in Geospatial Analysis Changping Zhang Progress in Geospatial 

Analysis
2012

134
Two-Stage Procedure Of Building A 
Spatial Weight Matrix With The 
Consideration Of Economic Distance

Pietrzak, M.B. Oeconomia Copernicana 2010
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135
The best-approximate realization of a spa-
tial stiffness matrix with simple springs 
connected in parallel

Jue Yu et al
Mechanism and Machine 

Theory
2016

136

Iterative Receiver with Enhanced Spatial 
Covariance Matrix Estimation in 
Asynchronous Interference Environment 
for 3GPP LTE MIMO-OFDMA System

Jang, Jun-Hee et al
PAPER-Wireless 

Communication Technologies
2009

137 Spatial stiffness matrix corrected and 
dynamic analysis of short-leg shear wall

Guo Zeying and 
Zhougang Sichuan Building Science 2007

138
Spatial Relationships in Rural Land 
Markets with Emphasis on a Flexible 
Weights Matrix

Soto, Patricia et al

Paper session of the 
American Agricultural 

Economics Association Long 
Beach, Florida

2002

139
Transmit waveform synthesis for MIMO 
radar using spatial-temporal decomposi-
tion of correlation matrix

Tao Yang et al
Radar Conference, 2014 

IEEE
2014

140
Robust spatial covariance matrix transfor-
mation techniques for downlink beam-
forming

Chalise, B.K et al
2004 International Zurich 

Seminar on Communications
2004

141
Rotation Invariant Texture Feature Based 
on Spatial Dependence Matrix for Timber 
Defect Detection

Muda and Raba’ah n.a 2013

142

Computational architecture for linear 
n-processor array implementations of 
composite rigid-body spatial inertial 
matrix algorithms

Howell, P.D.

Proceedings of the 1992 
International Conference on 

Industrial Electronics, 
Control, Instrumentation, 
and Automation, 1992. 
Power Electronics and 

Motion Control

1992

143
On Misspecification of Spatial Weight 
Matrix for Small Area Estimation in 
Longitudinal Analysis

Zadlo, Tomasz Comparative Economic 
Research

2012

144

Hyperspectral image super-resolution 
extending: An effective fusion based 
method without knowing the spatial trans-
formation matrix

Yong Li et al
2017 IEEE International 
Conference on Multimedia 

and Expo (ICME)
2017

145
Evaluating Estimation of Direct-to-
Reverberation Energy Ratio using D/R 
Spatial Correlation Matrix Model

Yusuke, Hioka et al
Proceedings of 20th 

International Congress on 
Acoustics

2010

146

Spatial weights matrix construction and 
economic space gravitational effects 
analysis-Empirical testing based on 
European debt crisis

Li Li et al
Systems Engineering-Theory 

& Practice
2015

147
Estimating Non-stationar y Spatial 
Covariance Matrix using Multi-resolution 
Knots

Nandy, Siddharta 
et al

n.a n.a

148

¿Cuál matriz de pesos espaciales?. Un 
enfoque sobre selección de modelos 
[Which spatial weighting matrix? An 
approach for model selection]

Herrera Gomez, 
Marcos et al

mpra.ub.uni-muenchen.de 2011

149 Model uncertainty in matrix exponential 
spatial growth regression models

Fischer and 
Piribauer

ePubWU Institutional 
Repository

2013
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150

Enhanced Spatial Covariance Matrix 
Estimation for Asynchronous Inter-Cell 
Interference Mitigation in MIMO-OFDMA 
System

Moon, Jong-Gun 
et al

 The Journal of Korean 
Institute of Communications 

and Information Sciences
2009

151 The normal form of a positive semi-definite 
spatial stiffness matrix Roberts, R.G.

2002 Proceedings of the 5th 
Biannual World Automation 

Congress
2002

152

Objective Assessment and Design 
Improvement of a Staring, Sparse 
Transducer Array by the Spatial Crosstalk 
Matrix for 3D Photoacoustic Tomography

Wong P. et al PloS One 2015

153 A Grid Based Approach to Spatial 
Weighting Matrix Specification Rahal, Charles SSRN Papers 2017

154
Spatial dependence matrix feature and 
redundancy elimination algorithm using 
AdaBoost for object detection

Wen Jia et al Optical Engineering 2011

155 Eigenstructures of Spatial Design Matrices Gorsich, David J. 
et al

Journal of Multivariate 
Analysis

2002

156 Dynamic nearest neighbours for generat-
ing spatial weight matrix

Mawarni, Mutiara 
and Imam Machdi

2016 International 
Conference on Advanced 
Computer Science and 
Information Systems 

(ICACSIS)

2017

157 Imaging through a scattering medium 
based on spatial transmission matrix Bin Zhuang et al

Proceedings Volume 10416, 
Optical Coherence Imaging 
Techniques and Imaging in 

Scattering Media II

2017

158 Combined asymmetric spatial weights 
matrix with application to housing prices

Haiyong Zhang and 
Xinyu Wang Journal of Applied Statistics 2017

159 Spatial elastic-plastic rigidity matrix of T 
short shearing wall

Wang Ning and Xu 
Xiao-xu Shanxi Architecture 2006

160
Studies on the Spatial Homogeneity and 
Flexural Strength of Several sic Fiber-
Reinforced Cvi-Sic Matrix Composites

Araki, H. et al
Materials for Advanced 

Energy Systems and Fission 
& Fusion Engineering

2003

161 Spatial Dependence in Financial Data: 
Importance of the Weights Matrix Bera, Anil K. researchgate 2016

162
Dependence of spatial effects on the level 
of regional aggregation, weights matrix, 
and estimation method

Demidova, Olga 
et al

EconSTOR 2015

163 Lecture 6: Matrix Exponential Spatial 
models LeSage, James P. researchgate 2004

164

Ef fects of Mixer Intermodulation 
Distortion on the Spatial Cross Correlation 
Matrix of Received Signals in Wireless 
Communication Systems

Dadashzadeh, G. 
et al

researchgate n.a

165
A method of estimation of turbulent diffu-
sion in a circular pipe based on spatial-
dependence matrix

Ogawa and 
Yoshikawa

Chemical Engineering 
Communications 

1990

166
Spatial Lag Model with Time-lagged 
Effects and Spatial Weight Matrix 
Estimation

Lam, Clifford and 
Cheng Qian n.a n.a
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167
Measuring quantum states: an experimen-
tal setup for measuring the spatial density 
matrix Measuring quantum states

Tegmark, M. n.a 1996

168
Inferring the contiguity matrix for spatial 
autoregressive analysis with applications 
to house price prediction

Sarkar and Chawla arXiv 2016

169 A structured matrix approach for spatial-
domain approximation of 2-D IIR filters Shaw and Pokala

IEEE Transactions on 
Circuits and Systems II: 

Analog and Digital Signal 
Processing

1997

170
Visualizing the spatial localization of active 
matrix metalloproteinases (MMPs) using 
MALDI imaging MS

Muruganantham, 
Sasirekha ProQuest (Book) 2011

171
Is a matrix exponential specification suit-
able for the modeling of spatial correlation 
structures?

Strauß, M.E et al Spatial Statistics 2017

172

Division of Weight Matrix Based on Pair-
Distances and Resulting Nonlinear Spatial 
Dependency in Spatial Autoregressive 
Models

Yokoi, Takahisa n.a 2012

173
A Study for Gender Classification Based 
on Gait via Incorporating Spatial and 
Temporal Feature Matrix

Wang and Yu

Computational and 
Information Sciences 
(ICCIS), 2013 Fifth 

International Conference on

2013

174
Supplement to “Irregular N2SLS and 
LASSO estimation of the matrix exponen-
tial spatial specification model”

Fei Jin and Lung-fei 
Lee econ.shufe.edu.cn 2017

175
The W Matrix in Network and Spatial 
Econometrics: Issues Relating to 
Specification and Estimation

Corrado and 
Fingleton

CEIS Working Paper No. 
369

2016

176 Spatial Weights Matrix and its Application Changping Zhang Journal of Regional 
Development Studies

2012

177 The Best Spatial Weight Matrix Order of 
Radius for GSTARIMA

Mubarak, Fadhlul 
et al

International Journal of 
Engineering and 

Management Research
2017

178

Enhanced Spatial Covariance Matrix 
Estimation for Asynchronous Inter-Cell 
Interference Mitigation in MIMO-OFDMA 
System

Moon, Jong-Gun 
et al

The Journal of The Korean 
Institute of Communication 

Sciences
2009

179
Modified local getis statistic on AMOEBA 
weights matrix for spatial panel model and 
its performance

Jajang repository.ipb.ac.id 2014

180 Which spatial weighting matrix? An 
approach for model selection

Gomez, Marcos 
Herrera et al

mpra.ub.uni-muenchen.de 2011
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APPENDIX I.B. LIST OF RELATED PRECEDENT RESEARCHES OF SPATIAL NEIGHBOR 

MATRIX
Table I.B Table of Related Precedent Researches of Spatial Neighbor Matrix

No. Title Author(s) Date of 
Publication Summary

1
Constructing the Spatial 
Weights Matrix Using a 
Local Statistic

Getis, Arthur 
and Jared 
Aldstadt

2010 Constructing spatial weights matrix based on Gi 
* local statistic

2

Using AMOEBA to 
Create a Spatial Weights 
Matrix and Identify 
Spatial Clusters

Aldstald and 
Getis 2006

The creation of a spatial weights matrix by a 
procedure called AMOEBA, A Multidirectional 
Optimum Ecotope-Based Algorithm, is depend-
ent on the use of a local spatial autocorrelation 
statistic. The result are: 1) a vector that identi-

fies those spatial units that are related and 
unrelated to contiguous spatial units; and 2) a 

matrix of weights whose values are a function of 
the relationship of the ith spatial unit with all 
other nearby spatial units for which there is a 

spatial association.

3

Estimating a spatial 
autoregressive model 
with an endogenous 
spatial weight matrix

Xi Qu and 
Lung-fei Lee 2015 In this paper, authors are constructed the W 

matrix based on endogenous approach.

4

Nonparametric 
Estimation of the Spatial 
Connectivity Matrix 
Using Spatial Panel Data

Beenstock and 
Felsenstein 2012

The authors use the moments from the covari-
ance matrix for spatial panel data to estimate 
the parameters of the spatial autoregression 

model, including the spatial connectivity matrix 
W.

5

A Dynamic Spatial 
Weight Matrix and 
Localised STARIMA for 
Network Modelling

Tao Cheng et al 2014

In this paper, authors are aims to describe 
autocorrelation in network data with a dynamic 
spatial weight matrix and a localized STARIMA 
(LSTARIMA) model that captures the heteroge-

neity and nonstationarity.

6
Estimation of the spatial 
weights matrix under 
structural constraints

Bhattarcharjee, 
Arnab and 

Chris Jensen-
Butler

2013

The authors propose new mehodology to 
estimate spatial weights matrix under spatial 
error model based an assumption that sym-

metrical spatial weights with extensions to other 
important spatial models

7
On the Four Types of 
Weight Functions for 
Spatial Contiguity Matrix

Yanguang Chen 2012

The aim of this study is at how to select a 
proper weight function to construct a spatial 

contiguity matrix for spatial analysis. The 
scopes of application of different weight func-
tions are defined in terms of the characters of 
their spatial autocorrelation function (ACFs) 
and partial autocorrelation function (PACFs).

8

Automatic selection of a 
spatial weight matrix in 
spatial econometrics: 
Application to a spatial 
hedonic approach

Seya, Hajime 
et al

2013  
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9

Spatial Nonstationarity 
and Spurious Regression: 
The Case with Row-
Normalized Spatial 
Weights Matrix

Lung-fei Lee 
and Jihai Yu 2009

This paper investigates the spurious regression 
in the spatial setting where the regressant and 

regressors may be generated from possible 
nonstationary spatial autoregressive processes. 

Under the near unit root specification with a 
row-normalized spatial weights matrix, it is 

shown that the possible spurious regression 
phenomena in the spatial setting are relatively 
weaker than those in the nonstationary time 

series scenario.

10

Bayesians in Space: 
Using Bayesian Methods 
to Inform Choice of 
Spatial Weights Matrix in 
Hedonic Property 
Analyses

Mueller, Julie 
M. and John B. 

Loomis
2010

This paper found that improper choice of spatial 
weight matrix triggered 5% differences on the 

analysis of Bayessian approach a spatial hedonic 
model. The model estimates the impact of 

repeated wildfire on house prices in Southern 
California

11
Two-step lasso estimation 
of the spatial weights 
matrix

Ahrens, Achim 
and Arnab 

Bhattacharjee
2015

This study considers a two-step estimation 
strategy for estimating the n(n-1) interaction 

effects in a spatial autoregressive panel model 
where the spatial dimension is potentially large. 

The identifying assumption is approximate 
sparsity of the spatial weights matrix.

12
Detection and estimation 
of block structure in 
spatial weight matrix

Lam, Clifford 
and Pedro C.L. 

Souza
2016

The authors propose a method that captures 
group affiliation or, equivalently, estimates the 

block structure of a neighboring matrix embed-
ded in a Spatial Econometric model.

13

A Proposal for an 
Alternative Spatial 
Weight Matrix under 
Consideration of the 
Distribution of Economic 
Activity

Perret, Jens K. 2011

The author proposes a new measuring concept 
where takes into account the regional economic 

or demographic structures and constructs 
distances between regions accordingly.

14
QML Estimation of the 
Spatial Weight Matrix in 
the MR-SAR Model

Benjanuvatra, 
Saruta 2013

In this paper, we introduce a sub-model for 
spatial weights and estimate a variable weight 
matrix for the mixed regressive, spatial autore-

gressive (MR-SAR) model by maximum 
Gaussian likelihood.

15
Spatial Weighting Matrix 
Selection in Spatial Lag 
Econometric Model

Kostov, Phillip 2013

This paper investigates the choice of spatial 
weighting matrix in a spatial lag model frame-

work. This article expands the latter transforma-
tion approach on Kostov (2010) into a two-step 
selection procedure. The proposed approach 

aims at reducing the arbitrariness in the selec-
tion of spatial weighting matrix in spatial 

econometrics.

16

Selecting the Most 
Adequate Spatial 
Weighting Matrix: A 
Study on Criteria

Gomez, Marcus 
Herrera et al

2012

In this paper, authors revise the literature 
looking for criteria to select the proper spatial 

weight matrix. Also, a new nonparametric 
procedure is introduced. Their proposal is 

based on a measure of the information, condi-
tional entropy. We compare these alternatives 

by means of a Monte Carlo experiment.
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17

The construction of 
spatial weight matrix 
based on discrete points 
through building a 
searching area for each 
point

Wenii Yu et al 2010

In this paper, authors present an algorithm to 
construct a spatial weight matrix by employing 

the threshold method to measure the spatial 
connectivity among discrete spatial points. This 
method can save searching costs by building a 

searching area for each point when we set 
values for each element of the weight matrix, 

and achieve optimization in the process of 
constructing a spatial weight matrix

18

The Improbable Nature 
of the Implied 
Correlation Matrix from 
Spatial Regression 
Models

Sen, Monalisa 
and Anil K. 

Bera
2014

This paper suggests a way that the weight 
matrix can capture the underlying dependence 
structure of the observations. the possibility of 
constructing the weight matrix (or the overall 
spatial dependence in the data) that is consist-

ent with the underlying correlation structure of 
the dependent variable is explored.

19 A New Selection Method 
of Spatial Weight Matrix

Ren Yinghua 
and You 
Wanhai

2012
The paper applies a component-wise boosting 
algorithm to deal with the selection issue of a 

spatial weight matrix in spatial lag models.

20

Comparison of Uniform 
and Kernel Gaussian 
Weight Matrix in 
Generalized Spatial Panel 
Data Model

Purwaningsih, 
Tuti et al

2015

In this paper, the authors try to compare the 
differences between uniform and Kernel 

Gaussian weight matrix. The construction of 
spatial weight matrix is based on R progamming 

languange.

21

Model for Effect of 
Spatial Weighted Matrix 
on Spatial 
Autocorrelation

Zhilang Wang 
et al

2013

The authors constructed their W matrix based 
on three approaches: 1) adjacency relationship, 
2) distance relationship, and 3) comprehensive 

factor relationship.

22

Testing for a structural 
break in the weight 
matrix of the spatial 
error or spatial lag model

Angulo, Ana 
et al

2017

Authors studied the W matrix in the two 
generic spatial econometric models, allowing 
the friction-of-distance parameter to be freely 

estimated. 

23

Spatial Lag Model 
Estimation with Sparse 
Adjustment for Spatial 
Weight Matrix

Lam, Clifford 
and Pedro C.L. 

Souza
n.a

The authors propose a linear combination of 
spatial weight matrix specifications, added with 
a potentially sparse adjustment matrix in order 

to choose a good spatial weight matrix for 
modelling.

24

The Influence of the 
Structure of Spatial 
Weight Matrix on 
Regression Analysis in 
the Presence of Spatial 
Autocorrelation

Tsutsumi, 
Morito et al

2000  

25
Spatial Prominence and 
Spatial Weights Matrix in 
Geospatial Analysis

Changping 
Zhang 2012

 The author analyzed the impact of regional 
division analysis into small area units, such as a 

prominent areal unit, which is obtained by 
Markov chains method from a W matrix.

26
Dynamic nearest neigh-
bours for generating 
spatial weight matrix

Mawarni, 
Mutiara and 

Imam Machdi
2017

Authors propose Dynamic Nearest Neighbours 
algorithm instead of commonly used nearest 

neighbour algorithm. In their evaluation, they 
found DNN algorithm outperforms other 

techniques of Rook, Queen, and k-Nearest 
Neighbours since it can be applied to both 
contiguous and sparse regions and produce 

two-way relations.
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27
A Grid Based Approach 
to Spatial Weighting 
Matrix Specification

Rahal, Charles 2017
 The author used an exogenously set of weight-
ing matrix to analyze its sensitive specification 

on spatial econometric model.

28

Combined asymmetric 
spatial weights matrix 
with application to 
housing prices

Haiyong Zhang 
and Xinyu 

Wang
2017

A combined asymmetric spatial weights matrix 
is proposed by authors to capture the unequal 

spatial dependence and estimated by using 
non-nested hypothesis test.

29

Spatial Lag Model with 
Time-lagged Effects and 
Spatial Weight Matrix 
Estimation

Lam, Clifford 
and Cheng 

Qian
n.a

This paper considers a spatial lag model with 
different spatial weight matrices for different 

time lagged spatial effects

30

Division of Weight 
Matrix Based on Pair-
Distances and Resulting 
Nonlinear Spatial 
Dependency in Spatial 
Autoregressive Models

Yokoi, Takahisa 2012

In this paper, author purposes to discuss 
realistic models by dividing spatial terms. The 

resulting nonlinear dependency function is 
represented through the coefficients of a pair of 

spatial weight matrices.

31

The W Matrix in 
Network and Spatial 
Econometrics: Issues 
Relating to SpeciÖcation 
and Estimation

Corrado, Luisa 
and Bernard 

Fingleton
2016

The authors analyzed the impact of misspecify-
ing of W matrix on spatial econometric model. 
W matrix are used as part of model specifica-

tion and used in estimation model. 

32 Spatial Weights Matrix 
and its Application

Changping 
Zhang 2012

 In this paper, author used several W matrix 
construction concept, such as: 1) binary weight, 
2) distance decay-weight, 3) generalized weight, 

and 4) k-order neighbors weight.
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APPENDIX II. Proof of Kronecker Product Representation of Arrow Direction.

Suppose we have spatial image matrix,

(A.1) Dr c

a a a
a a a
a a a

× =
















11 12 13

21 22 23

31 32 33

; in case r = c = 3

Thus, we will have Ii, Lji, and Uji as follow

(A.2) I3
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0 1 0
0 0 1
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, L 3

0 0 0
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0 1 0
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,  U3

0 1 0
0 0 1
0 0 0
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Afterwards, we can substitute equation (A.1) into equation (7), then we will have
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(A.4) U IC R⊗( ) =
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(A.5) I LC R⊗( ) =
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(A.6) I UC R⊗( ) =
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(A.7) U LC R⊗( ) =
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(A.8) U UC R⊗( ) =
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(A.9) L LC R⊗( ) =
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(A.10) L UC R⊗( ) =
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Thus, we can have W all matrix from equation (A.3)–(A.10),

(A.11) W =

0 1 0 1 1 0
1 0 1 1 1 1
0 1 0 0 1 1
1 1 0 0 1 0 1 1 0
1 1 1 1 0 1 1 1 1
0 1 1 0 1 0 0 1 1

1 1 0 0 1 0
1 1 1 1 0 11
0 1 1 0 1 0
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APPENDIX III. DAR and ION Scripts in R Language

# Constructing Primary Neighborhood Cells #

# Block 1 (Left Neighbor Cell) #
for (j in 1:(ymx)) {
 for (i in 2:(xmx)) {
  WP.G[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)–1]←1
 }
}

# Block 2 (Right Neighbor Cell) #
for (j in 1:(ymx)) {
for (i in 1:(xmx–1)) {
WP.G[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)+1]←1
 }
}

# Block 3 (Lower Neighbor Cell) #
for (j in 1:(ymx–1)) {
 for (i in 1:(xmx)) {
  WP.G[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)+xmx]←1
 }
}

# Block 4 (Upper Neighbor Cell) #
for (j in 2:(ymx)) {
 for (i in 1:(xmx)) {
  WP.G[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)–xmx]←1
 }
}

# Constructing Secondary Neighborhood Cells #
# Block 5 (Upper-Right Diagonal Neighbor Cell) #
for (j in 2:(ymx)) {
 for (i in 1:(xmx–1)) {
  WS.G[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)–(xmx–1)]←1
 }
}

# Block 6 (Upper-Left Diagonal Neighbor Cell) #
for (j in 2:(ymx)) {
 for (i in 2:(xmx)) {
  WS.G[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)–(xmx+1)]←1
 }
}

# Block 7 (Lower-Left Diagonal Neighbor Cell) #
for (j in 1:(ymx–1)) {
 for (i in 2:(xmx)) {
  WS.G[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)+(xmx–1)]←1
 }
}

# Block 8 (Lower-Right Diagonal Neighbor Cell) #
for (j in 1:(ymx–1)) {
 for (i in 1:(xmx–1)) {
  WS.G[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)+(xmx+1)]←1
 }
}
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# Constructing Primary Neighborhood Cells #
# Block 1 (Inner Matrix) #
for (j in 2:(ymx–1)) {
 for (i in 2:(xmx–1)) {
  WP[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)–1]←1;
  WP[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)+1]←1;
  WP[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)–xmx]←1;
  WP[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)+xmx]←1
 }
}

# Block 2 (Upper side of Outer Matrix) #
for (ku in 2:(xmx–1)) {
 WP[ku,ku–1]←1; WP[ku,ku+1]←1; WP[ku,xmx+ku]←1
}

# Block 3 (Left side of Outer Matrix) #
for (kl in seq((xmx+1),((ymx–2)∗xmx)+1,xmx)) {
 WP[kl,kl–xmx]←1; WP[kl,kl+1]←1; WP[kl,kl+xmx]←1
}

# Block 4 (Right side of Outer Matrix) #
for (kr in seq((xmx+xmx),((ymx∗xmx)–xmx),xmx)) {
 WP[kr,kr–1]←1; WP[kr,kr–xmx]←1; WP[kr,kr+xmx]←1
}

# Block 5 (Bottom side of Outer Matrix) #
for (kb in (((ymx–1)∗xmx)+2):((ymx∗xmx)–1)) {
 WP[kb,kb–1]←1; WP[kb,kb+1]←1; WP[kb,kb–xmx]←1
}

# Block 6 (Corner Area of Outer Matrix) #
WP[1,2] ← 1; WP[1,(xmx+1)] ←1;
WP[((ymx–1)∗xmx)+1,((ymx–1)∗xmx)+2]← 1;
WP[((ymx–1)∗xmx)+1,((ymx–1)∗xmx)–(xmx+1)] ← 1;
WP[xmx,xmx–1] ← 1; HP[xmx,xmx+xmx] ← 1;
WP[(ymx∗xmx),(ymx∗xmx)–1]←1;
WP[(ymx∗xmx),(ymx∗xmx)–xmx] ← 1

# Constructing Secondary Neighborhood Cells #

# Block 7 (Inner Matrix) #
for (j in 2:(ymx–1)) {
 for (i in 2:(xmx–1)) {
  WS[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)–(xmx–1)]←1;
  WS[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)–(xmx+1)]←1;
  WS[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)+(xmx–1)]←1;
  WS[(j∗xmx)–(xmx–i),(j∗xmx)–(xmx–i)+(xmx+1)]←1
 }
}

# Cumulative Neighborhood Cells #

# Block 9 #
W_AGGREGATE.G ←WP.G + WS.G

Script III.A. Direct Arrow Reading Script
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# Block 8 (Upper side of Outer Matrix) #
for (ku in 2:(xmx–1)) {
 WS[ku,ku+(xmx–1)]←1; WS[ku,ku+(xmx+1)]←1
}

# Block 9 (Left side of Outer Matrix) #
for (kl in seq((xmx+1),((ymx–2)∗xmx)+1,xmx)) {
 WS[kl,kl–(xmx–1)]←1; WS[kl,kl+(xmx+1)]←1
}

# Block 10 (Right side of Outer Matrix) #
for (kr in seq((xmx+xmx),((ymx∗xmx)–xmx),xmx)) {
 WS[kr,kr–(xmx+1)]←1; WS[kr,kr+(xmx–1)]←1
}

# Block 11 (Bottom side of Outer Matrix) #
for (kb in (((ymx–1)∗xmx)+2):((ymx∗xmx)–1)) {
 WS[kb,kb–(xmx+1)]←1; WS[kb,kb–(xmx–1)]←1
}

# Block 12 (Corner area of Outer Matrix) #
WS[1,xmx+2] ← 1;
WS[((ymx–1)∗xmx)+1,((ymx–2)∗xmx)+2] ←1;
WS[xmx,xmx+(xmx–1)] ← 1;
WS[(ymx∗xmx),(ymx∗xmx)–(xmx+1)] ←1

# Cumulative Neighborhood Cells #
# Block 13 #
W_AGGREGATE ←WP + WS
Script III.B. Inner–Outer Neighbor Script
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