
1. Introduction

In ancient Japan mathematicians used to 

carry their best theorems to a shrine or temple, 

and hang them somewhere on the wall. Such 

theorems were usually painted on piece of wooden 

board. If there was a geometric construction, 

then quite often the picture was very colorful. 

Sometimes such a picture contained decorations 

with flowers, plants, mountains, etc. Some of 

them were real pieces of art. It was probably a 

way to thank the Gods for the moment of enlight-

enment while solving the problem.

They were simultaneously works of art, 

religious offerings, and works of mathematics. 

They are called sangaku, which simply means 

mathematical tablet. These were hung in Buddhist 

temples and Shinto shrines throughout Japan, 

and for that reason the entire collection of sangaku 

problems has come to be known as “temple 

geometry”.

The year 1600 is the time when we should 

start looking for the origins of wasan, Japanese 

mathematics of the Edo period. At that time, 

Japan was controlled by the daimyo, or in western 

terms warlords, who were still fighting for 

dominancy. Some of them were very powerful 

and the country was in a constant state of unrest. 

Japanese Temple Geometry Problems and Inversion

Kenji Hiraoka* and Aljosa Matulic**

Note

Figure 1  Sangaku of the Takemizuke shrine, Nagano perfecture

 * Professor, Hiroshima University of Economics, 
Hiroshima, Japan

**  Mathematics and Computer Science Teacher, 
Junior High School of Sveti Matej, Viskovo, Croatia

広 島 経 済 大 学 研 究 論 集
第39巻第 1・ 2号　2016年 9 月
http://dx.doi.org/10.18996/kenkyu2016390107



広島経済大学研究論集　第39巻第 1・ 2号94

In 1600, during the famous Sekigahara battle, the 

daimyo were defeated by Tokugawa Ieyasu. 

Three years later, Tokugawa Ieyasu became the 

shogun of Japan. This was the starting point of a 

new period in the history of Japan – a period of 

almost 250 years without war known as “Great 

Peace”. After the battle, Tokugawa Ieyasu moved 

to a small, at that time, provincial town of Edo, 

today’s Tokyo. For this reason, the rule of the 

Tokugawa is also known as the Edo period. The 

country was united and many changes started 

taking place.

This was also the time when the Spanish, 

Portuguese and Dutch tried to settle down in 

Japan, and strengthen their trade. At the same 

time, missionaries from these countries wanted 

to convert as many souls as possible. The trade 

with foreigners was not considered problematic, 

however, conversion of people to Christianity was 

not very welcomed by the two main religions in 

Japan – Shinto and Buddhism. This was in fact 

the main source of tensions in the country. In 

order to keep people calm, Tokugawa Ieyasu 

issued an edict ordering the Portuguese and 

Spanish to leave Japan, removal of missionaries, 

the destruction of all Christian churches, and 

forbidding Christianity in Japan. Tokugawa Ieyasu 

died a few years later, but his grandson Tokugawa 

Iemitsu finished the task of removing the foreign-

ers. In 1641, there were practically no foreigners 

left in Japan.

All of these changes were the catalyst for 

new period in Japan, sometimes called sakoku, 

or a “Closed country”. Closing the country did 

not have exclusively negative effects. Most impor-

tantly, it stopped both internal and external con-

flicts. It also forced, and in fact helped, the 

Japanese to develop their own forms of art and 

science. The local art, science and culture started 

developing rapidly. This was also the case with 

mathematics. In this period Japanese mathemat-

ics (wasan) was born and developed.

It is difficult to say in what year exactly the 

tradition of sangaku began, but the oldest surviv-

ing sangaku dates from 1683 and was found in 

Togachi prefecture. Yamaguchi Kanzan, nine-

teenth century mathematician, mentions in his 

travel diary an even older tablet from 1668, but 

that one is now lost.

Over the next two centuries, the tablets 

spread and appeared all over Japan in Shinto 

shrines and Buddhist temples, two thirds of them 

in Shinto shrines. Many of the sangaku men-

tioned in contemporary mathematics texts were 

lost, but we can guess that there were originally 

thousands more than the 900 tablets which exist 

today. This practice of hanging tablets gradually 

died out after the fall of the Tokugawa shogunate, 

but some examples date as late as 1980. The 

latest sangaku were discovered in 2005. Five 

tablets were found in the Toyama prefecture. 

Earlier tablets were generally about 50 cm by 30 

cm, but later tablets were sometimes as large as 

180 cm by 90 cm, each displaying several geom-

etry problems.

Some of the Japanese temple geometry 

(sangaku) or problems of Japanese mathematics 

before Meiji period (wasan) can be solved by 

using really useful method of inversion. There 

are many problems with multiple circles with a 

contact with one another. The main example was 

a problem proposed by Hotta Jinsuke and hung 

in 1788 at the Yanagijima Myōkendō temple of 

Tokyo. Yoshida Tameyuki solved this problem 

with traditional methods, this solution has been 

found in an unpublished manuscript “Solutions 
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to Shinpeki Sanpō Problems”. Yoshida’s original 

solution of Hotta’s problem was solved by using 

a Japanese equivalent of Descartes theorem, but 

this problem and many similar ones can be solved 

more easily by technique known as inversion. 

Inversion was discovered by western mathemati-

cians between 1824 and 1845. This method was 

unknown to Japanese traditional mathematicians.

2. Hotta’s problem and its traditional 

solution

As shown in Figure 2, a large circle of radius 

r  contains two circles r1  and ′r1 , each of radius 

r
r

1 2
= , which are both tangent to each other and 

touch circle r  internally. The bottom circle ′r1  

also touches a chain of cirlces rn, as illustrated. 

Further, a chain of circles with radius tn is placed 

between the circles rn  and ′r1  such that each tn  

touches ′r1  as well as circles rn and rn+1. Find rn  

and tn in terms of n.

The Descartes circle theorem gives the 

relationship between the radii of four mutually 

tangent, or kissing, circles.

If three circles of radii r1 , r2 and r3 touch 

each other, touch a small circle of radius t  

externally and touch a circle of radius r  internally, 

as shown in a Figure 3, than the following relation 

hold:
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Yoshida uses Descartes circle theorem on suc-

cessive triplets of circles to inductively establish 

a recursion relationship for the rn and tn. For 

simplicity of the calculation, we will take 
1
r

a=  

and 
1
r

p
n

n= , which we will be used in further 

calculation.

Let’s find r1 : r
r

1 2
= , p a1 2= .

Let’s find r2 : Using Descartes circle theorem 

for r r r r1 1 2, , ,{ }, we get
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Figure 3
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From above, we get p a2 3=  or r
r

2 3
= .

Let’s find r3 : Using Descartes circle theorem 

for r r r r1 2 3, , ,{ }, we get
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From above, we get p a3 6=  or r
r

3 6
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Let’s find r4 :  Using Descartes circle theo-

rem for r r r r1 3 4, , ,{ },we get
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From above, we get p a4 11=  or r
r

4 11
= .

Let’s find rn : Using Descartes circle theo-

rem for r r r rn n1 1, , ,+{ }, we get
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Regarding this as a quadratic equation in x pn= +1,  

the two solutions are x pn1 1= + , and x pn2 1= − . Then,

x x p p a pn n n1 2 1 1 2+ = + = +( )+ − , 

or p p p an n n+ −− + =1 12 2 ,

which is the desired recursion relationship.

The general solution:

p a1 2= , p a a a2 3 2= = + , p a a a3 6 2 4= = + , 

p a a a4 11 2 9= = + , p a a a5 18 2 16= = +  ･･･, 
and p a n an = + −( )2 1 2 ,

which yields r
r

n
n =

+ −( )2 1 2 .

To find tn, Yoshida was using Descartes 

circle theorem for r r t rn n n, , ,+{ }1 1 . For simplicity, 

we will take qn  to be q
tn
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Letting p a n an = + −( )2 1 2  from above, we 

get quadratic equation in qn ,
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 and qn2

, such that,
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4 4 152= − +( ) ,
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= − .

We discard second solution and we get the final 

result
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which was written on the tablet.

Before we show a solution we get by using 

a method of inversion we have to introduce 

inversion.

3. Inversion

3.1 Definition of Inversion

Inversion is the process of transforming 

points P  to a corresponding set of points ′P  

known as their inverse points. Two points P  and 

′P  are said to be inverses with respect to an 

inversion circle having inversion center 

T x y= ( )0 0,  and inversion radius k if TP ′ is the 

perpendicular foot of the altitude of ∆TQP , where 

Q is a point on the circle such that TQ  is per-

pendicualr to PQ .
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If P  and ′P  are inverse points, then the line 

L  through P  and perpendicular to OP  is some-

times called a “polar” with respect to point ′P , 

known as the “inversion pole”. In addition, the 

curve to which a given curve is transformed 

under inversion is called its inverse curve or its 

inverse. From similar triangles, it immediately 

follows that the inverse points P  and ′P  obey

TP
k

k
TP

=
′
 or k TP TP2 = ⋅ ′ ,

where the quantity k2  is known as the circle 

power.

The general equation for the inverse of the 

point x y,( ) relative to the inversion circle with 

the center of inversion x y0 0,( ) and inversion 

radius k is given by
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2
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3.2 Properties of Inversions

In this section we are going to introduce a 

few Inversion theorems, some of which are going 

to be used in a proof of Hatta’s theorem in 

chapter 4. We will give only the statements of 

theorems, without proofing them. The theorems 

will tell us how line and circles are going to be 

convert, relations between radius of original and 

converted circle and some other important rela-

tions.

Theorem 1.

A straight line passing through the center of 

inversion inverts into itself. A straight line not 

passing through the center of inversion inverts 

into a circle that passes through the center of 

inversion. (Figure 5)

Theorem 2.

If circle C  does not pass through the center 

of inversion T , then C  inverts into another circle 

′C . (Figure 6)

Theorem 3.

If circle C  does pass through the center of 

Figure 4

Figure 5

Figure 6
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inversion T , then C  inverts into a straight line 

that does not pass through the center of the 

inversion. (Figure 7)

Theorem 4.

If r  is the radius of C  and ′r  is the radius of 

′C , then r  and ′r  are related by

′ =
−

r
k

d r
r

2

2 2 ,

where d  is the distance between T  and the center 

of C .

Theorem 5.

If L  is the length of the tangent from T  to 

the inverse circle ′C , then

rL k r2 2= ′. (Figure 8)

Theorem 6.

Point on the circle of inversion are invariant.

Theorem 7.

Concentric circles whose center is the center 

of inversion invert into concentric circles.

Theorem 8.

The center of the inverse circle is not the 

inverse of the center of the original circle.

Theorem 9.

If two circles are tangent to each other at T , 

they invert into parallel lines. If two circles are 

tangent to each other at a point P  that is not the 

center of inversion, then the inverse circles must 

be tangent to each other at some point ′P . Point 

of tangency are preserved.

Theorem 10.

A circle, it’s inverse, and the center of inver-

sion are collinear.

Theorem 11.

By the proper choice of the center of inver-

sion T , two circles that are not in contact can be 

inverted into two concentric cirlces.

Theorem 12.

If four circles can be inverted into four circles 

of equal radii ′r , whose centers form the vertices 

of a rectangle, then

1 1 1 1

1 3 2 4r r r r
+ = + ,

where r r r r1 2 3 4, , ,  are the radii of the original 

circles.

4. Solution to Hatta’s problem by using 

inversion

Figure 7

Figure 8

Figure 9
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Radius of the outer circle α  is r , radii of two 

largest inscribed circles β  and γ  are r
r

1 2
= . We 

need to find and proof what is the radius of the 

nth circle in outer or inner contact chains in terms 

of r  ( rn and tn are used to designate the radii of 

the nth circle in the outer and inner chains, also 

to designate the circles themselves).

Pythagorean theorem gives r r r r r1 2
2

1
2

2
2+( ) = + −( )

r r r r r1 2
2

1
2

2
2+( ) = + −( )  which leads to r r2

1
3

= .

Similarly, by using Pythagorean theorem on 

small circle t1 (Figure 10) one gets t
r

1 15
= .

Now we’ll start employing inversion, we’ll 

invert figure with respect of the point T , chosen 

as shown in a Figure 11. Because they pass 

through the center of inversion T, α and β must 

invert into straight lines (Theorem 3), and hori-

zontal line because we have chosen T  to lie 

directly below O .

For simplicity, we will take the radius of 

inversion circle to be k = 1. By definition, we have 

TO TO⋅ =′ 1. Then TO r=  so TO
r

′ =
1

. Similarly 

for point B, TB TB⋅ =′ 1, TB r= 2  so TB
r

′ =
1
2

.

Next we have to consider upper circle which 

does not pass trough T , so it must invert into 

another circle (Theorem 2). This circle is tangent 

to to circles α and β so it must invert into a circle 

′r1  that lies between α ’ and β ’ as shown in a 

Figure 12.

Similarly, circle r2 is tangent to α, β and γ = r1 so 

it must invert into the circle ′r2  shown in above 

picture. The same is true for all the circles in 

outer chain. We get a result that all the inverse 

circles in outer chain have the same radius,

′ ′ ′ ′= = = = = ′r r r r rn1 2 3  .

In the same way we get that all the circles 

of inner chain invert into circles of equal radius,

′ ′ ′ ′= = = = = ′t t t t tn1 2 3  .

Let’s relate ′r  and ′t  to r , considering r
r

1 2
= .

The distance from T  to a center of circle  

γ  is d  (by definition in Theorem 4), d r= 3 1 . 

Theorem 4 states that ′ −( ) =r d r r1
2 2

1
2 2

1
2,  

which yields ′ ′= =r r
r1
1

1
8

, ′ =r
r

1
4

.

Similarly, ′ =t
r

1
16

.

Now when we have ′r  and ′t  in terms of r  

Figure 10

Figure 11

Figure 12
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we can get ′rn  and ′tn. Let Ln  be a tangent from 

T  to ′rn , as show in a picture below.

From the Figure 13 we can see that 

x n rn = −( ) ′2 1 . The distance Ln  between T  and 

′rn  can be calculated by Pythagorean theorem,

M L rn n
2 2 2= + ′ , M r

r
xn n

2
2

21
2

= +





+′ .

By Theorem 5, L
r
rn
n

2 = ′
.

By inserting ′r xn,  and Ln  in above equation, 

one gets r
r

n
n =

+ −( )2 1 2 .

For inner chain (Figure 14) procedure is similar,

L M tn n
2 2 2= − ′ , M

r
t xn n

2
2

21
= − ′



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+

In this case, Theorem 5 gives L
t
tn
n

2 = ′
. By insert-

ing ′t xn,  and Ln  in above equation one gets,

t
r

n
n =

−( ) +2 1 142 .
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